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I ABSTRACT

In the last year, the unsteady, three-dimensional, incompressible, viscous flow inter-
actions between a single vortex tube advected by a uniform free stream and a spherical’
particle held fixed in space was investigated numerically for a range of particle Reynolds
numbers between 20 and 100. Useful correlations of lift coefficient, moment coefficient,
and drag coefficient with velocity fluctuation, Reynolds number, offset distance, and ini-
tial vortex size have been obtained and reported. A new mechanism based upon droplet
lift has been suggested for the dispersion of sprays. Since the beginning of this year, the
interactions between a pair of vortez tubes and a rigid sphere have been studied in or-
der to generalize the findings from the previous investigation. Similar correlations for the
force and moment coefficients have been found and are being reported. These correlations
will be useful in predicting droplet trajectories. The investigation for the heat and mass
transfer of a droplet interacting with vortex tubes is also under way. This should lead
to useful correlations to predict droplet heating and vaporization in a flow with vortical

fluctuations.

II OBJECTIVES

The objectives of this research program are to investigate the interactions of vapor-
izing droplets with a turbulent field of the type encountered in gas turbine combustors.
It is intended to develop predictive capability through the use of correlations. There is
special interest in the important and challenging high-frequency end of the energy spec-
trum where turbulent length scales are comparable to droplet size. The full Navier-Stokes

equations were numerically solved and a simple mathematical description for the turbu-




lent velocity fluctuation was employed. In the mathematical description, turbulent-like
fluctuations were simulated in a controlled way by introducing cylindrical vortices which
have a length scale of the order of that of the droplet and a strength corresponding to a
turbulent velocity fluctuation. From the calculations, instantaneous lift, drag, and torque
coefficients, Nusselt number, and Sherwood number are determined. Time-averaged val-
ues of these fluctuating quantities are also determined. Such quantities should be useful

in modelling droplet dispersion and modifications of heating and vaporization rates due

to turbulence.

III SUMMARY OF RESEARCH

In the past year, the unsteady, three-dimensional, incompressible, viscous flow inter-
actions between a single vortex tube advected by a uniform free stream and a spherical
particle held fixed in space was investigated numerically for a range of particle Reynolds
numbers between 20 and 100. The paper describing this investigation was accepted in
Journal of Fluid Mechanics for publication and is in press. The final version of the
manuscript is appended to this report. This investigation was also presented at the 46th
annual meeting of the Division of Fluid Dynamics, American Physical Society, Albu-
querque, New Mexico, November, 1993. The abstract is appended to this report. Since
the beginning of this year, the interactions between a pair of vortez tubes and a rigid
sphere have been studied in order to generalize the findings from the previous investiga-
tion. The paper describing this study has been written as a AIAA preprint for the 1995
AIAA Aerospace Sciences Meeting in Reno, Nevada. The main results are summarized in
this report. The preprint is also appended to this report. The investigation for the heat

and mass transfer of a droplet interacting with vortex tubes is also under way, and the
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progress is summarized in this report.

For the sake of clarity, we hereby present our results under two separate sections;
first, we will present results primarily pertaining to the fluid dynamics of the interactions.
Next, under a separate section, we will discuss our progress on simulating the temperature

field en route to computing the vaporization and species transport.
III.A. INVESTIGATING THE FLUID DYNAMICS OF INTERACTIONS

The unsteady, three-dimensional, incompressible, viscous flow interactions between
a pair of vorter tubes advected by a uniform free stream and a rigid sphere held fixed
in space have been investigated numerically in order to generalize the findings from the
previous investigation (Kim, Elghobashi & Sirignano (JFM 1995)) concerned with a rigid
sphere interacting a single vortex tube. A summary of the findings and their applications
is provided as follow.

(i) The effects of the size and the offset distance of the pair of vortex tubes on the
flow field were examined for 20 < Re < 100. The lift and moment coefficients are found
to be linearly proportional to the maximum fluctuation velocity (vmaz) induced by the
pair of vortex tubes of given size (o) and offset distance of the vortex tube. The rms
lift coefficient depends on ve; but is independent of o when o > 2. For very small
values of o, the lift coefficient depends linearly upon the circulation of the vortex tube.
Furthermore, the equation for the lift coefficient of the sphere interacting with a single
vortex tube is applicable to the case of a pair of vortex tubes when the separation distance
between their centers is less than 24/0 vortex tube diameters. Similarly, the single tube
results apply for the moment coefficient when the separation is less than /o vortex tube

diameters. These separation distance limits are invariant within a range of Reynolds




number 20 < Re < 100. The expression of the rms lift coefficient for a single vortex tube

is written here for later use.

CL,r'ma = 8.1 Upmas R6—0.45 ’ 2<0< 47 (1)

where v,,4; is the maximum fluctuation velocity normalized by the free stream velocity.

(ii) The results in (i) can be applied to turbulent flows in order to obtain the rms lift
force on a particle in dilute conditions. A turbulent flow possesses a wide spectrum of |
eddy sizes. The large eddies contain most of the turbulent kinetic energy and produce high
velocity fluctuations, and so they are responsible for much of the dispersion of particles.
However, the eddies that are orders of magnitude larger than the droplets or particles will
move the droplets in a circulatory fashion by drag forces. This results in the global effect
of droplets moving from regions of high concentration to regions of low concentration.
The smaller eddies will move the droplets by a lift force whose direction is related to the
direction of rotation. The particle size, at the two interesting extremes, may be small or
comparable to the Kolmogorov length scale. When the size of particle is small compared
to the Kolmogorov length scale, the rms lift coeflicient of the particle is obtained by
equation (1). In the other case, when the size of particle is comparable to the Kolmogorov
length scale, the rms lift coefficient of the particle can still be obtained approximately by
equation (1). The time during which the particle is influenced by the eddy is of the order
of the shorter time of the eddy residence time in the particle vicinity or the eddy lifetime.

The deflection of the particle path will depend on the magnitude of the rms lift coef-
ficient and the ratio, p,, of the particle density to that of the carrier fluid (A = % Cr/pr,
where A is the dimensionless acceleration of the particle due to the lift force). This result
provides a simple method to estimate the deflection of the particle trajectory in the dilute

particle-laden turbulent flow. For example, for initial particle Reynolds number 20 and
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the eddy size 2 < ¢ < 4, we can integrate A twice to show that the angle of the droplet
deflection is given by tan @ = 5vmez/p,. This shows that the droplet deflection is impor-
tant in the turbulent flow of low density ratio between the droplet and the carrier ﬂuid'
such as in a combustor with high pressure. In near critical conditions with vmer = 0.1 or
greater, the tangent of the deflection angle becomes of order of unity. At low pressure,
the deflection angle is very modest. Equation (1) and the nondimensionalized Newton’s -
second law show that the deflection decreases slowly as Reynolds number increases.

Note that the trajectory deflection for individual droplets results in dispersion for
a spray. Furthermore, the driving mechanisms for the dispersion under analysié here
extend beyond the well-known mechanism where large eddies (through the drag force
on the droplets) ”sweep” more of the droplets from regions of high number density to
regions of low number density than in the opposite direction. Here, a new mechanism is
identified and added; it relies on lift generated by interactions with smaller eddies. The
new mechanism promises to be competitive if large velocity gradients appear due to the
smaller vortical structures and if the velocity fluctuations from larger eddies are not too
much larger than the velocity fluctuations from the smaller eddies. (This implies that the
Reynolds number based upon the integral length scale and its associated velocity is not
too large.)

(iii) The magnitude of the rms moment coefficient of the particle is one order of
magnitude less than that of the rms lift coefficient when Re > 20. Furthermore, when
the initial size of the vortex core is considerably larger than the sphere size (o > 4), the
effect of the shear flow (induced by the passage of the vortex tube) across the sphere
diminishes and the torque on the particle decreases. Thus, the torque on the particle

might be negligible in many applications.




(iv) When the top and bottom vortex tubes have positive and negative circulations,
respectively, the induced velocity due to the vortex tubes adds its magnitude to the base
flow along the stagnation streamline. This causes the pressure at the stagnation point
and the shear stresses in the upper and lower left regions to be higher than those of the
axisymmetric flow past a sphere. As a consequence, the drag is increased. On the other
hand, when the top and bottom vortex tubes have negative and positive circulations,
respectively, the induced velocity due to the vortex tubes subtracts its magnitude from
the base flow along the stagnation streamline. This causes the pressure at the stagnation
point and the shear stresses in the upper and lower left regions to be lower than those of

the axisymmetric flow past a sphere. As a consequence, the drag is decreased.
IT11.B. INVESTIGATING THE TEMPERATURE FIELD AND VAPORIZATION

The foregoing fluid dynamical study is being extended to an investigation of the effects
of advecting vortical tubes on the corresponding temperature field, vaporization, and
species transport near liquid droplets.

The problem is inherently three-dimensional and non-linear; in particular, the mod-
erate range of the Reynolds number considered and also the advection of the vortical
structures in the domain further complicate the non-linear effects. Previous computa-
tional observations have thus indicated some difficulties in achieving numerical stability.
To avoid such potential obstacles, the following systematic approach is considered:

(i) Starting with the existing Navier-Stokes solver, we include modules for solving the
partial differential equations of the temperature field for both the gas phase and the liquid
droplet interior. Thus, information on the temperature field inside and outside the droplet

becomes available and the thermal field is mapped. Initially, the vortices are not included




in this step so that we expect axisymmetric solutions in this developmental part of the
program. Dependence of the Nusselt number on the Reynolds number will be explored.
The vortices will then be included in the domain and the variation of Nusselt number in
a constant property field due to the advecting vortex tubes will be investigated.

We have had progress in computing the scalar quantities and we are currently near
the end of this step. More precisely, we have computed the temperature field in both -
the gas and liquid field for a constant property domain. Figures (1) and (2) show the
axisymmetric temperature field for both the gas and liquid phase, respectively, for an
upstream gas temperature of 1000 K, an octane fuel droplet of 300 K initial temperature,
Regqs = 100, and Prandt]l numbers of Pry,s = .7 and Pry;, = 8.5. (In both figures, the
upstream flow is from right to left.)

The illustrative figures are those of the domain after 25 residence time units. In this
constant property-simulation, the liquid droplet temperature observed through a planar
cross-section shows that the hot upstream gas flow transfers heat to the liquid which is
convected internally. Liquid recirculation results in the heated fluid moving aft to fore
along the axis of symmetry. The figure shows the early heating of the droplet interior
as the hot recirculating fluid moves towards the axis. This behavior is in quantitative
agreement with previous axisymmetric predictions. Note that the scalar computation
is performed here with a fully three-dimensional code. The axisymmetric solution only
serves as a developmental benchmark.

We are about to include vortical interactions in this heat transfer computation. This
will yield information and correlations about the modification of Nusselt number due to
turbulent fluctuations.

(ii) Upon successful completion of the previous step, we will extend the modules to




simulate the liquid droplet vaporization and species transport in the gas phase. Like-
wise, dependence of Sherwood number on Reynolds number and its variation due to the
advecting vortices will be computed.

To further assure numerical stability through a step-by-step monitoring of the numer-
ical solution, we initially assume a constant property (density, viscosity, thermal conduc-
tivity, and heat capacity) domain in both the liquid and gas phase. (In principle, this is a
simplified simulation and may be regarded as representing a cold liquid droplet in a hot
liquid stream or in a hot incompressible gas stream.) The simulation will be extended to

a variable property domain.

Finally, when investigating the effect of the advecting vortical tubes on the aforemen-
tioned scalar quantities, we will pursue the same perspective followed in investigating their
effect on the fluid dynamics properties, described earlier in the report. Namely, useful

correlations for explaining the impact of turbulence on droplet heating and vaporization

will be obtained.

IV PUBLICATIONS

The following papers have resulted from the research performed under this research

program.

1. Kim, L., Elghobashi, S. & Sirignano, W. A., “Three-dimensional flow interactions be-
tween a cylindrical vortex tube and a sphere,” presented at the 46th Annual Meeting
of the Division of Fluid Dynamics, American Physical Society, Albuquerque, New
Mexico, November 21-23, 1993.

2. Kim, I., Elghobashi, S. & Sirignano, W. A., “Unsteady flow interactions between an
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advected cylindrical vortex tube and a spherical particle,” J. Fluid Mech. in press,
1995.

3. Kim, I., Elghobashi, S. & Sirignano, W. A., “Unsteady flow interactions between:
a pair of advected cylindrical vortex tubes and a rigid sphere,” AIAA Preprint 95-
0105, the 33rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January
9-12, 1995.

V PROFESSIONAL PERSONNEL

W. A. Sirignano, Professor, Principal investigator.

S. E. Elghobashi, Professor.

I. Kim, Research associate, Ph. D. January 1990 — present.
M. Masoudi, Ph.D. student, research assistant.

VI INTERACTIONS

Our papers have been presented at conferences of the American Institute of Aero-
nautics and Astronautics and of the American Physical Society. Also, our results have
been presented at the AFOSR Contractors Meeting. All of these presentations have led
to informal interactions with government laboratory researchers and industrial represen-
tatives. Discussions about the practical implications of this research have been held with
Dr. Melvin Rocquemore at Wright Patterson Air force Aeronautical Laboratory and with
Dr. Hukam Mongia, formerly of Allison Gas Turbine Division and currently of General
Electric. In recent discussions, it was agreed that we should examine a collaboration to
apply the research results of this study soon after the final announcement on the DOD

Focused Initiative is made.




\ Visibility for the research has also come from research seminar presentations at other
universities and from major invited papers such as the ASME Freeman Scholar paper

that appeared in the Journal of Fluids Engineering in late 1993.
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The gas phase temperature field in the

absence of advecting vortices.




Figure 2. The temperature field inside the droplet in the absence of advecting vortices.
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by
Inchul Kim, Said Elghobashi, and William A. Sirignano
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Abstract

The unsteady, three-dimensional, incompressible, viscous flow interactions between a vortical
(initially cylindrical) structure advected by a uniform free stream and a spherical particle held
fixed in space is investigated numerically for a range of particle Reynolds numbers 20 < Re <
100. The counter-clockwise rotating vortex tube is initially located ten sphere radii upstream
from the sphere center. The finite-difference computations yield the flow properties and the
temporal distributions of lift, drag, and moment coefficients of the sphere. Initially, the lift force
is positive due to the upwash on the sphere, then becomes negative due to the downwash as
the vortex tube passes the sphere. Varying the size of the vortex core (o) shows that the rms
lift coefficient is linearly proportional to the circulation of the vortex tube at small values of 0.
At large values of o, the rms lift coefficient is linearly proportional to the maximum fluctuation
velocity (vmaz) induced by the vortex tube but independent of 0. For intermediate values of o,
the rms lift coefficient depends on both o and vy, (or equivalently both ¢ and the circulation).

We observe some interesting flow phenomena in the near wake as a function of time due to the

passage of the vortex tube.
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1 Introduction

This paper is concerned with the unsteady, three-dimensional, incompressible, viscous
flow interactions between a vortical structure (initially cylindrical) advected by a uniform
free stream and a spherical solid particle which is held fixed in space. This flow is equiva-
lent to that of a spherical particle moving along a straight line and traversing the vortical
structure at constant velocity. The particle Reynolds number based on the freestream
velocity and particle diameter is in the range 20 < Re < 100. We obtain the unsteady
velocity and pressure distributions via the numerical solution of the time-dependent three-
dimensional Navier-Stokes equations within a spherical domain surrounding the sphere
and the moving vortex tube.

The motivation for studying this flow is the need to understand how the forces (drag,
lift, and torque) imparted on a particle are influenced by fluctuations in the velocity and
pressure of the carrier flow as is the case in particle-laden turbulent flows. Knowledge
of the time-dependence of these forces and the unsteady flow field is essential for the
accurate calculation of the particle trajectory and the heat and mass transfer rate of
the particle (or droplet) which in turn is a prerequisite for predicting particle dispersion
and vaporization rate in turbulent flows. The exact relations between these forces and
the turbulent fluctuations cannot be obtained analytically due to the nonlinearity of the
equations governing the motion of the particle and fluid. While the cylindrical vortex
is far too simple to represent real turbulence, some important elementary understanding
can result from this study.

Numerical simulation of the dispersion of particles in a turbulent flow requires the
solution of the equation of particle motion. This equation which is classically known as
the BBO (Basset-Boussinesq-Oseen) equation and has been re-derived recently by Maxey
& Riley (1983) is restricted to low Reynolds number Re << 1, where Re = d' |u' — v'|/v/;

v’ and u’ are the velocities of the particle and its surrounding fluid respectively, d' is the




particle diameter, and v is the fluid kinematic viscosity. Furthermore, the drag force in
that equation consists of two terms, namely, the quasi-steady Stokes drag and the unsteady
memory term (Basset). The former is purely viscous, whereas the latter depends on both
the viscosity and particle acceleration relative to the fluid. The superposition of these
two terms is a result of the linearization of the Navier-Stokes equations by Basset (1888).
A more serious restriction (than Re << 1) in the equation of particle motion is that the
velocity gradients in the carrier flow in the neighborhood of the particle should be very
small. This requires that the shear Reynolds number = (a”/v')(U;/L) << 1, where
a' is the particle radius, and (U./L') is a reference gradient of the undisturbed velocity
field. Therefore, the interesting case in which the eddy (or vortex) size is comparable
to that of the particle cannot be properly treated by the standard equation of particle
motion. This situation, in addition to being relevant to the fundamental understanding
of fluid dynamics, is of practical interest as well. For example, in a typical gas turbine
combustor where the Reynolds number is of the order of 10° and the integral length
scale is of the order of 0.1m, the smallest (Kolmogorov) length scale, 7, is about 100um,
which is comparable to the size of a typical fuel droplet. Fluid motion at the Kolmogorov
length scale experiences the largest strain rates and scalar gradients in the flow. The
largest scalar gradients control the important phenomena of heat and mass transfer and
chemical reaction. Motion at the largest length scales (>> 7) contains most of the
turbulence energy and governs the dispersion of particles (or droplets) but not the small-
scale phenomena mentioned above.

Almost all application-oriented studies of dilute particle suspension calculate the drag
on the particle using the standard drag curve. This drag curve has been obtained (ex-
perimentally and numerically) for a particle fixed in space subjected to a steady flow. In
the case of unsteady flow, this drag relationship is an approximation that can be valid
only if the time-scale of the particle motion is much larger than that of the flow. Note

that empirical relationships for unsteady drag have been proposed (e.g., Houghton(1963),
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Odar(1966), Schoneborn(1975), and Ingebo(1956)). The expression of Ingebo, derived
experimentally, is valid only for the limited conditions of the experiment. All other ex-
pressions concern mainly purely harmonic flows. Additional interactions between the
particle and the flow are the well known Saffman’s lift due to uniform shear (1965, 1968)
and the lift due to particle rotation (Rubinow & Keller(1961)). Saffman’s lift force expres-
sion is valid only for Re << R:,{za, and Ryhesr << 1, where Rgpear = (du'/dy’)d?[(4V).
Under these conditions, the lift due to particle rotation is negligible (Saffman(1965)).
Recently, McLaughlin (1991) removed the restriction Re << Ri,{:u and provided a new
form for the lift force.

Three-dimensional flow interactions between a vortical structure and a bluff body (a
rigid sphere in the simplest form) at finite Reynolds number have not been investigated
yet. Our present approach, outlined at the beginning of this section, is a first step toward
better understanding of the physics of interaction between a particle and the carrier
turbulent flow. For example, we examine the details of the temporal behavior of the flow
structure around the sphere due to the passage of the vortex tube. Furthermore, we study
the effects of varying the ratio of vortex tube size to particle size, Reynolds number, and
offset distance between the particle and the vortex tube on the temporal distributions of
the forces imparted on the particle (drag, lift, and torque) and the flow structure in the
neighborhood of the particle.

‘The next section provides a mathematical description of the flow considered, the gov-
erning equations and the numerical solution procedure. Section 3 discusses the results
including the numerical accuracy issues and the effects of varying the parameters listed

above. Section 4 provides a summary of the work.




2 Problem statement and formulation

2.1 The flow description

We consider the time-dependent, three-dimensional, incompressible, viscous flow in-
teractions between an initially cylindrical vortex tube and a spherical solid particle. The
vortex tube is moving with the laminar free stream, and a sphere is suddenly placed and
held fixed in space as shown in figure 1. The initial offset distance, d,y, denotes the short-
est distance, normalized by the sphere radius, between the initial vortical axis and the y-z
plane, which is parallel to the free stream. All the variables are nondimensionalized using
the sphere radius !, as the characteristic length and U], as the characteristic velocity,
where the superscript / denotes dimensional quantity. The cylindrical vortex tube, whose
diameter is of the order of the sphere diameter, is initially located ten radii upstream from
the center of the sphere. The effects of the vortex tube on the sphere are negligible at this
initial distance because the magnitude of the initial velocity field induced by the vortex
tube is less than 2 percent of the free stream velocity. Far upstream, the flow is uniform
with constant velocity U’ k parallel to the y-z plane. We have one symmetry plane, the
x-z plane, as seen in figure 1.

Two coordinate systems are used in our formulation: the Cartesian coordinates (x,y,z)
and the nonorthogonal generalized coordinates (¢,7,(). The origin of the former coin-
cides with the sphere center. ¢ is the radial, 5 is the angular, and ( is the azimuthal
coordinates. The nonorthogonal generalized coordinate system can be easily adapted to
three-dimensional arbitrary geometries. In the present study, a spherical domain is used,
and the grid reduces to an orthogonal, spherical grid. The grids are denser near the surface
of the spherical particle, and the grid density in the radial direction is controlled by the
stretching function developed by Vinokur (1983). Due to symmetry, the physical domain
is reduced to a half spherical space. The domain of the flow is bounded by 1 < ¢ < Ny,




1 <5< Ny 1< (¢ <N, where £ =1 and N; correspond, respectively, to the sphere sur-
face and the farfield boundary surrounding the sphere; 7 = 1 and N, denote, respectively,
the positive z-axis and the negative z-axis; { = 1 and Nj refer, respectively, to the x-z
plane in the positive x-direction and the x-z plane in the negative x-direction. Uniform

spacing (6¢ = 6n = 6¢ = 1) is used, for convenience, for the generalized coordinates.

2.2 The vortex tube features

The initial vortex tube has a small core region with a radius ¢ (normalized by the
sphere radius). This core is defined such that the initial velocity induced by the vortex
tube approaches zero as the distance from the center of the vortex tube goes to zero, and
at distances much greater than o, the induced velocity approaches that of a point vortex
(figure 2). We use the vortex tube construction of Spalart (1982), which has the following

stream function:
Yy(z,2,t =0) = —%ln[(m - xo)2 +(z — z‘,)2 + 02] , (1)

where T, is the nondimensional circulation around the vortex tube at radius o and at
the initial time. I', is positive when the vortex tube rotates counterclockwise, and z,
and z, denote the location of the center of the vortex tube. The circulation around a
circular path far away from the center of the vortex is given by I'y = 2I',. The tangential
velocity distribution of the vortex tube compared with a point vortex is shown in figure
2 for T, = 2.5 and 0 = 1.0. As shown in figure 2, the cylindrical vortex tube can be
viewed as an evolution from the point vortex due to the cylindrical viscous diffusion. The
initial pressure field due to the vortex tube is obtained by solving the radial component of
the Navier-Stokes equations which balances the centrifugal acceleration and the pressure

gradient for circular streamlines, and has the following form
B 2 1
212 (z — 2,)2 + (2 — 2,)2 + 02’

(2)

po(z,2,t =0) =




where p, is nondimensional pressure defined by p, = (¢, — p,)/p'U 2, The pressure due
to the vortex tube attains its lowest value, pymin = —I'2/(27%0?), at the center of the
vortex tube and approaches zero at far distances from the center of the vortex. Equation
(2) is used to prescribe only the initial pressure field generated by the vortex tube. |

In order to gain insight about the properties of the vortex tube, we examine the flow
field generated in the absence of the particle. We compute the induced velocity and
vorticity field as a function of radius and time due to the vortex tube moving with the
free stream (U’ k). The origin of the moving coordinate system is the center of the vortex
tube. We solve the following linear diffusion equation which is the tangential component of
the Navier-Stokes equations balancing the unsteady and diffusion terms for the tangential

momentum (Batchelor (1967)).
2

where R is the radial distance from the center of the vortex tube, ug is the tangential
velocity around the vortex tube normalized by the free stream velocity, and Re is the
Reynolds number based on the reference length scale a;, and the freestream velocity.
Figures 3(a) and 3(b) show respectively the velocity and vorticity fields as a function of
radial distance and time for Re = 100,T, = 2.5, and o = 1.0. The size of the vortex
core becomes larger as time increases due to viscous diffusion, whereas the magnitudes of
the tangential velocity and the vorticity inside the vortex core decrease. Note that this

classical linearized analysis is not employed in the present study; rather a fully nonlinear

computational analysis is performed.

2.3 Governing equations and boundary conditions

The continuity and momentum equations and the initial and boundary conditions are

nondimensionalized using the sphere radius a/, as the characteristic length and U!, as the

characteristic velocity.




V-V =0 (4)

ov 2

L VVV =—Vp + —VV 5

5 T vV P+ g (5)

The governing equations (4) and (5) are cast in terms of the generalized coordinates

(€,7,¢) to treat a three-dimensional body of arbitrary shape. The numerical integration

is performed using a cubic computational mesh with equal spacing (§¢ = én = 6¢ = 1).
The velocities on the sphere surface are zero due to the no-slip condition, and the pres-

sure on the sphere is obtained from the momentum equation. The boundary conditions

are

0 2 0%V,

—a—5=-§—51-17,u=v=w=0 a,t§=1, (6)
p=0,u=v=0,w=1 at £ = N; and Napmig < 7 < N, (upstream), (7

u Ov Ow

p=0, TR TR 0 at¢=N;and 1 <5 < Napiq (downstream), (8)
Op Ou Ow _ _ B

ac—a—c-—aC—O,v—O at ( =1 and N3, 9)

where u, v, and w are the velocities in the x, y, and z direction, respectively, V;, is the
velocity in the direction normal to the sphere surface, and p is the pressure. n denotes

the direction normal to the sphere surface, 0/0n = (/€2 + €2 + £20/0€, and n = Nopmid

denotes the mid-plane between 5 = 1 and N,. Equation (9) corresponds to the symme-

try conditions and zero v velocity in the x-z symmetry plane. Conditions guaranteeing

continuity in the 5 direction for p, u, v, and w on the axes n = 1 and 7 = N; are also
imposed.
In order to start the numerical solution of equations (4) and (5), we provide initial

velocity and pressure fields by superposing the flow fields due to the uniform stream and
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the vortex tube in addition to the no-slip condition on the sphere surface:

Do =Py, Up = —aa’(iv, Vo = 0, W, = 1+ aa“iv except at £ =1 (10)
Po=DPu, U=V =w,=0 at { =1, (11)

where 1, and p, are given by equations (1) and (2), respectively.

The only nondimensional groupings appearing in the equations and initial and bound-
ary constraints are the sphere Reynolds number, vortex tube radius, offset distance, and
vortex circulation (or vortex Reynolds number).

The drag, lift, and moment coefficients are evaluated in dimensional form as follows.

Pl = /S —pn-kdS + /g ner'-k dS' (12)
Fl = /S —pn-idS + /S ner'+i dS’ (13)
M =[xt ds 14

/sr X T , (14)

where S’ denotes the surface of the sphere, n is the outward unit normal vector at the
surface, 7' is the position vector from the center of the sphere, and 7' is the viscous
stress tensor. The lift force is assumed positive when it is directed toward the positive
x-axis. Due to symmetry, only the y-component of the moment is non-zero and is assumed

positive in counter-clockwise direction.

The nondimensional coefficients of drag, lift, and moment are defined respectively as

Fp

Fy
CL—' %p’U;g?ra? (16)
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M'j

Cu = W (17)

Note that in this analysis, the sphere does not accelerate or rotate due to the aerody-

namic forces and torque.

2.4 Numerical solution

We have developed a three-dimensional, implicit, finite-difference algorithm to solve
simultaneously the set of the discretized partial differential equations. The method is
based on an Alternating-Direction-Predictor-Corrector (ADPC) scheme to solve the time-
dependent Navier-Stokes equations. ADPC is a slight variation of Alternating-Direction-
Implicit (ADI) method. It is first-order accurate in time but is effective and implemented
easily when embedded in a large iteration scheme (Patnaik 1986). The control volume
formulation is used to develop the finite-difference equations from the governing equations
with respect to the generalized coordinates (¢,7,(). One of the advantages of the control
volume formulation is that mass and momentum are conserved over a single control vol-
ume, and hence the whole domain regardless of the grid fineness. An important part of
solving the Navier-Stokes equations in primitive variables is the calculation of the pressure
field. In the present work, a pressure correction equation is employed to satisfy indirectly
the continuity equation (Anderson et al. 1984). The pressure correction equation is of the
Poisson type and is solved by the Successive-Over-Relaxation (SOR) method.

The overall solution procedure is based on a cyclic series of guess-and-correct opera-
tions. The velocity components are first calculated from the momentum equations using
the ADPC method, where the pressure field at the previous time step is employed. This
estimate improves as the overall iteration continues. The pressure correction is calculated
from the pressure correction equation using the SOR method, and new estimates for pres-

sure and velocities are obtained. This process continues until the solution converges at
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each time step.

3 Results and discussion

In subsection (3.1), we test the accuracy of the full three-dimensional solution pro-
cedure by predicting the axisymmetric flow over a single sphere and by examining the
effects of grid resolution on the maximum lift coefficient of the sphere due to the interac-
tion between a vortex tube and a sphere. In subsections (3.2), (3.3), (3.4), and (3.5), we

discuss the three-dimensional interactions between a vortex tube and a sphere, the effects

of the offset distance, the size of the vortex tube, and Reynolds number, respectively.

3.1 Numerical accuracy

Here we examine the flow generated by an impulsively started solid sphere in a quies-
cent fluid at two Reynolds numbers: 20 and 100. The time-dependent solution converges
asymptotically to a steady-state which is in good agreement with the available experi-
mental data and correlations as shown in tables 1 and 2. Table 1 lists the drag coefficients
as a function of the computational grid density at Reynolds numbers 20 and 100 respec-
tively, and compares them with the correlations of Clift et al (1978). Table 2 shows the
pressures at the front and rear stagnation points and the separation angle measured from
the front stagnation point as a function of grid density at Reynolds number 20 and 100,
in comparison with the data of Taneda (1956) and also with the correlations of Clift et
al. (1978). Although the solution in these test cases are axisymmetric, none of the three
velocity components in our formulation becomes identically zero. Therefore, the three-
dimensional solution scheme is fully exercised here. The calculations were performed for
three different grids, (NV; X Ny X N3) = (21 x 21 x 21), (31 x 31 x 31), and (41 x 41 X 41),

in a computational domain with an outer boundary located at 21 sphere radii from the
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sphere center.

We tested the solution procedure by varying the far-field boundary condition and
by changing the location of the outer boundary. In the first test, the far-field outflow
boundary condition was changed from d¢/0r = 0 to 0¢/0z = 0 (¢ = u, v, or w). There
was almost no difference in the drag coefficient and the near wake size (the separation angle
and length of the recirculation eddy) at Reynolds numbers 20 and 100. Our calculation
shows that separation does not occur at Reynolds number 20. In the second test, the
location of the outer boundary in downstream was changed from 21 to 41 sphere radii.
There was virtually no change in the drag coefficient and the near wake size at both
Reynolds numbers.

We examined the effects of grid resolution on the lift coefficients of the sphere due to
the flow interaction between a cylindrical vortex tube flowing with the free stream and a
sphere fixed in space at Reynolds numbers 20 and 100. The lift coefficients are obtained for
the offset distance d,ss = 0, vortex core radius ¢ = 1, and maximum fluctuation velocity
Vmaz = Lv/(27c) = 0.4. Table 3 shows the maximum negative lift coefficient (CLmaz2)
of the sphere as a function of the computational grid density at Reynolds numbers 20
and 100. The calculations were performed for three different grids, (N; x N X N3) =
(21 x 21 x 21), (31 x 31 x 31), and (41 x 41 x 41) for Re = 20, and four different grids,
(N1 X Ny x N3) = (21 x 21 x 21), (31 x 31 x 31), (41 x 41 x 41), and (51 x 51 x 51)
for Re = 100, in a computational domain with an outer boundary located at 21 sphere
radii from the sphere center. The result of the 31 x 31 x 31 grid differs by 0.42% from
that of the 41 x 41 x 41 grid for Re = 20, and the result of the 41 x 41 x 41 grid differs
by 2.5% from that of the 51 x 51 x 51 grid for Re = 100. Figure 4 provides additional
results on the effect of grid resolution on convergence and shows the distributions of the
pressure and shear stress coefficients (normalized by the dynamic pressure) around the
sphere in the x-z plane of symmetry in the positive x-direction for the same parameters

as used above with Re = 100. The pressure and shear stress distributions were obtained
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at ¢ = 12 about which the lift coefficient reaches its maximum in negative value. The
pressure coefficient at (x,z) = (0, —1) of the 41 x 41 x 41 grid differs by 0.93% from that
of the 51 x 51 x 51 grid. The same calculations were performed by changing the location
of the outer boundary in downstream from 21 to 41 sphere radii. There was virtually no
change in the lift, moment, and drag coefficients.

In order to examine the far-field boundary effects, we repeated the simulation as above
for Re = 100, dojs = 0, 0 = 1, and vpqe; = 0.4 but with a box-type computational domain |
with symmetry boundary conditions on its sides. The lift, moment, and drag coefficients
of the box-type computational domain at ¢t = 12 differ by 0.12%, 0.17%, and 0.13%
respectively from those of the spherical computational domain used in the present paper.
The spherical computational domain gives a little finer resolution than does the box-type
computational domain with the same number of grid points, and so smoother contour lines
for the vorticity and stream lines in the x-z symmetry plane. We also solved the same
problem as above by employing a complete computational domain without the symmetry
plane and periodic boundary condition in ¢ direction. In that case, the lift coefficients
differ by 0.16% from those in table 3 where the symmetry condition was employed. The
41 x 41 x 41 grid is used in the following calculations.

The run for the interaction between a vortex tube and a sphere at Reynolds number
100 with the 41 x 41 x 41 grid required 2.62 mega words, a dimensionless time step of
At = 0.0025, and a total time of 2.95 cpu hours on Cray Y-MP8/864 for the final time
of t; = 24. Each time step takes about 1.11 cpu seconds. Another test was performed
to examine the effects of the time step. The same calculation as above was repeated for
Re = 100,d,¢s = 0,0 = 1, and vz = 0.4 but with the time step reduced by half. The
lift, moment, and drag coefficients differ by 0.25%, 0.19%, and 0.003% respectively from

those obtained with the time step used in the presented results.
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3.2 Interactions of a vortex tube and a sphere

We consider the interactions of a vortical structure advected by the free stream and
a sphere suddenly placed in the flow and held fixed in space at Reynolds number 100.
The vortical structure is initially a cylindrical vortex tube rotating counter-clockwise in
figure 1 with a nondimensional radius of unity and an offset distance of zero, and located

at 10 sphere-radii upstream from the center of the sphere.

3.2.1 Flow structure

In order to illustrate better the fluid motion, we consider the flow field in the x-z plane
of symmetry, which is defined as the principal plane, where the strongest interactions occur
between the vortical structure and the sphere.

Pseudo-streamlines are employed in the following illustrations. The pseudo-streamlines
are obtained from the pseudo-stream function which is defined by assuming that the ve-
locity field in the principal plane does not change in the perpendicular direction to the
principal plane and by using the two-dimensional stream function definition. The sphere
surface in the principal plane is used as a reference streamline (1,; = 0). We note that a
real stream function 1 cannot be defined and calculated from the velocity in the principal
plane due to the existence of a divergence associated with the third component of velocity.
Nevertheless, for descriptive purposes only, it is convenient to use the two-dimensional
stream function definition to present approximations to the streamline pattern.

Figures 5(a)-(1) display the pseudo-streamlines (left column) and the contour lines of
y-component vorticity (right column) in the principal plane at ¢t = 0,1,6,9, 10,11,12,
13,15,18,21, and 30 for Re = 100, doy; = 0, ¢ = 1, and vy, = [,/(270) = 0.4.
The contour values of the pseudo-streamlines are 0,4:0.02, +0.1,40.3. The contour val-
ues of the vorticity are +0.4,+0.5,+0.8,+1.4,£2, with the highest magnitude at the

sphere surface. The solid and dotted lines in the figures represent positive and nega-
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tive values. Figures 6(a)-(j) show the pressure coefficient, 2(p — peo)/pUZ, and shear
stress coefficient, 27,9/pU2, around the sphere in the principal plane, respectively, at
¢t =1,6,9,10,11,12,13,15,18, and 21. Note that figure 6(a) is for ¢ = 1 which corre-
sponds to figure 5(b). |

At t = 0, figure 5(a) shows that spherical vortex sheet is generated around the sphere
due to the no-slip condition at the sphere surface. The subsequent figures show that the
vortex sheet around the sphere is advected downstream as well as diffused outwards from
the sphere. The vorticity on the edge of the vortex core is 0.4 at t = 0 for I, = 2.51
and ¢ = 1 which correspond t0 Umar = Iv/(270) = 0.4. The vortex tube is initially
cylindrical and thus should appear as a circle in the principal plane. But, the vortex
tube in figure 5(a) is not an exact circle because the grid resolution is relatively coarse
at the initial location of the vortex tube which is far upstream from the sphere and the
linear interpolation is used to draw the contour lines. However, we calculate analytically
the exact velocity and pressure fields induced by the vortex tube by using equations (1)
and (2), and prescribe them as initial conditions. Therefore, the magnitudes of the initial
velocity components at a given location (x,z) are fixed no matter what grid distribution
is used. Thus, the circulation around a large circle enclosing the vortex tube remains the
same as that of the vortex tube. The velocity and pressure fields as a function of time are
almost not affected by the initial vortex tube shape obtained by the linear interpolation.
The line connecting the front and rear stagnation points in the standard axisymmetric
flow over a single sphere, which is the x = 0 line in the principal plane, will be used as a
reference line. We refer to the region above the line as ‘upper’ region and that below the
line as ‘lower’ region.

For 0 < t < 9, the vortex tube is upstream of the sphere as shown in figures 5(b)-(d).
The vortex tube rotating counter-clockwise produces downwash upstream of itself and
upwash downstream. Therefore, the front stagnation point on the sphere is shifted below

the plane ¢ = 0 due to the upwash, and thus, the fluid particles in the upper left region
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move faster than do those in the lower left region of the sphere. As a consequence, lower
pressure and higher shear stress act in the upper left region compared to the lower left
region as shown in figures 6(a)-(c), and this causes a positive lift force on the sphere. Note
that in figures 6(a)-(j) the clockwise direction is considered positive for the shear stress in
the upper region of the sphere, and counterclockwise direction is considered positive for
the shear stress in the lower region. On the other hand, the shift of the front stagnation
point below the plane z = 0 causes the fluid particles to continue to accelerate after
6 = 90° at the bottom of the sphere but to begin to decelerate before § = 90° at the
top of the sphere where 8 is measured from the negative z-axis, as shown in the pressure
distribution around the sphere in the principal plane in figures 6(a)-(c). Thus, the fluid
particles move faster in the bottom and lower right regions than in the top and upper
right regions of the sphere. As a consequence, lower pressure and higher shear stress act in
the bottom and lower right regions compared to the top and upper right regions as shown
in figures 6(a)-(c), and this causes the fluid particles turning around the upper eddy to be
pushed into the lower region of the near wake as shown in figures 5(c) and 5(d). Figures
5(c) and 5(d) also show that the upper eddy is formed by the fluid separating on the
upper portion of the sphere as in the case of axisymmetric flow past a sphere without the
presence of the vortex tube. On the other hand, the lower eddy is not formed by the fluid
separating on the lower portion of the sphere, but rather by the fluid turning around the
upper eddy and being entrained by the lower flow. This lower eddy is detached from the
sphere. A portion of the fluid moving around the top of the sphere passes between the
detached lower eddy and the sphere. A similar flow pattern was found by Kim, Elghobashi
& Sirignano (1993) in their study of three-dimensional flow over two spheres placed side
by side.

For 9 < t < 10, the figures 5(d) and 5(e) show that the vortex tube contacts the
boundary layer of the sphere.

For 10 < t < 13, the figures 5(f)-(h) show that the vortex tube goes around the bottom
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of the sphere. The vortex tube is now downstream of the front stagnation point in the
axisymmetric flow past a sphere and produces downwash on the sphere. Therefore, the
front stagnation point on the sphere is shifted above the plane « = 0, and thus the fluid
particles in the lower left region move faster than do those in the upper left region of
the sphere. As a consequence, lower pressure and higher shear stress act in the lower left
region compared to the upper left region as shown in figures 6(e)-(g), and this causes the
negative lift force on the sphere. On the other hand, the shift of the front stagnation point
above the plane z = 0 causes the fluid particles to move faster in the boundary layer of
the top and upper right regions compared to that of the bottom and lower right regions
of the sphere as shown in figure 7, which shows the tangential velocity profiles, uy(r), at
9 = 90° on the top and the bottom of the sphere in the principal plane at ¢ = 12, and this
causes the higher shear stress in the top and upper right regions compared to the bottom
and lower right regions as shown in the figures 6(f) and 6(g). However, during this time
period, the pressure distributions at the top and bottom of the sphere in the principal
plane have different features from those of the shear stress due to the following reason.
The counter-clockwise vortex tube in the uniform stream produces a flow field in which
the fluid velocity is less than that of the uniform stream above the vortex tube and higher
than that of the uniform stream below the vortex tube with respect to fixed coordinate
system in space. Due to this shear flow, the fluid velocity on the edge of (and outside) the
boundary layer at the bottom of the sphere is larger than that at the top of the sphere as
shown in figure 7, and thus the pressure at the bottom of the sphere is lower than that at
the top of the sphere. This pressure difference causes the fluid particles turning around the
top of the sphere to be pushed into the lower region of the wake forming an S-shaped path
(figures 5(g) and 5(h)). The combined effect of the upward shift of the front stagnation
point due to downwash of the vortex tube and the velocity difference between the top
and the bottom of the sphere due to the shear flow induced by the vortex tube results in

a higher magnitude of the maximum negative force than that of the maximum positive
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force, as will be shown in detail in section of 3.2.2. The upper separation eddy becomes
smaller during this time period, because the pressure difference between the upper and
lower wake just downstream of the sphere becomes larger when the vortex tube passes
the plane z = 1 (tangent to the rear stagnation point in axisymmetric flow), and more
fluid particles are pushed into the lower wake just behind the sphere. At ¢ = 12 and 13,
no separation eddies appear in the wake as shown in figures 5(g) and 5(h), and the flow
does not separate in upper region of the sphere as shown in figures 5(g), 5(h), 6(f), and
6(g). We note that the separation point in the principal plane is the point at which the
shear stress vanishes.

The reason for the passage of the counterclockwise-rotating vortex tube around the
bottom of the sphere rather than around the top is as follows. First, note that the
well-known two-dimensional, inviscid case of a vortex interacting with cylinder has a
counterclockwise (clockwise) rotating vortex rotating clockwise (counterclockwise) around
the cylinder. In our case, the opposite behavior suggests that viscosity is important
in this phenomenon. Note further that the vorticity levels associated with the viscous
boundary layer on the sphere are greater than those associated with the tube. When
the counterclockwise-rotating vortex tube comes close to the sphere boundary layer, it
augments the magnitude of the edge velocity in the lower boundary layer and reduces
the edge velocity in the upper boundary layer. The result is a higher strength vorticity
in the lower boundary layer than in the upper boundary layer (see the vorticity contours
in figures 5(d)-5(f)). (The magnitude of the highest vorticity in the lower boundary
layer is 15% higher than that in the upper boundary layer at ¢ = 9.) Consequently, the
vorticity in the lower boundary layer induces a velocity in the downward direction at the
location of the vortex tube with higher magnitude than that induced by the vorticity in
the upper boundary layer. This downward induced velocity advects the vortex tube below
the sphere.

For 13 < t < 19, the vortex tube is downstream of the sphere as shown in figures 5(i)

18




and 5(j) and produces downwash on the sphere. Therefore, the negative lift force acts on
the sphere due to the shift of the front stagnation point above the planez =0ina similar
manner as for 10 < ¢ < 13, but the negative lift force is reduced as the vortex tube moves
further downstream. The shift of the front stagnation point above the plane z = 0 causes
the fluid particles to move faster in the top and upper right regions than in the bottom
and lower right regions of the sphere, and this causes the lower pressure and higher shear
stress in the top and upper right regions compared to those in the bottom and lower right
regions as shown in the figures 6(h) and 6(i). However, because the vortex tube is still
intersecting the near wake and thus produces strong downwash in the near wake, the fluid
particles turning around the top of the sphere are pushed into the lower region of the near
wake. This allows no room for the lower eddy to grow. On the other hand, the upper eddy
grows as the vortex tube moves downstream because the fluid particles turning around
the top of the sphere experience less force pushing them into the lower region of the near
wake.

For t > 20, the vortex tube is far downstream of the sphere as shown in figures 5(k)
and 5(1) and produces weak downwash on the sphere, and thus the lift force on the sphere
is almost zero as will be shown in section of 3.2.2. The weak downwash causes the front
stagnation point on the sphere to be shifted slightly above the plane z = 0, and thus
the fluid particles move slightly faster in the top and upper right regions than in the
bottom and lower right regions of the sphere, and this causes the higher shear stress and
lower pressure in the top and upper right regions as shown in the figure 6(j). Now, the
downward force due to the vortex tube is very weak in the near wake because the vortex
tube is far downstream. Therefore, the lower eddy grows, and due to the lower pressure
in the upper region of the sphere, the fluid particles turning around the lower eddy are
pushed up into the upper near wake as shown in figures 5(k) and 5(1).

We now examine a three-dimensional view of the vortex tube by considering the

y-component of vorticity vector. Figures 8(a) and 8(b) show two views of a three-
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dimensional contour surface of w, = 0.2 at ¢ = 20 for the flow depicted in figure 5.
Figure 8(a) shows a side view looking normal to the principal plane, whereas figure 8(b)
shows a view looking down with an acute angle toward the y-z plane. The ellipse in
figure 8(b) is the boundary of the spherical computational domain viewed at an angle. It
appears as a circle when viewed normal to the principal plane. The sphere is at the center
of the domain in figures 8(a) and 8(b). Figure 8(b) shows that the portion of the vortex
tube in the principal plane is retarded, due to its interaction with the sphere, compared
with the rest of the vortex tube (in the y-z plane with an its axis parallel to the y-axis)
outside the principal plane. By measuring fhe radial extent of the contour surface (of
wy = 0.2 at ¢ = 20) in figures 8(a) and 8(b), we find that the maximum radius of the
contour surface outside the principal plane is 1.58 which is very close to the value of 1.6

taken from figure 3(b).

3.2.2 Lift, moment, and drag coefficients and effect of tube circulation

Figure 9 shows the lift coefficients of the sphere as a function of time for Re = 100,
dssf = 0, and 0 = 1. The lift coefficients are computed for four different maximum
fluctuation velocities (Vnaz = I'y/(270)) due to the vortex tube, with magnitudes equal
to 0.1, 0.2, 0.3, and 0.4 (normalized by free stream velocity). Due to the sudden placement
of the sphere into the stream, it initially takes a small time (0 < ¢t < 0.6) for the initial
flow perturbations to vanish.

As discussed earlier, when the vortex tube approaches the sphere (0 <t < 9.4), it
produces upwash resulting in a positive lift force on the sphere. The maximum positive
lift coefficient Cr mqz1 Occurs at t = 7.2. On the other hand, when the vortex tube passes
the sphere, it produces downwash and high fluid velocity near the bottom of the sphere
resulting in a negative lift force. The magnitude of the negative lift is greater than the

positive lift (figure 9). The maximum negative lift coeflicient Cy, a2 occurs at ¢ = 11.8
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about when the center of the vortex tube passes the plane z = 1. The lift coefficient is
linearly proportional to the maximum fluctuation velocity (or the circulation of the vortex
tube for constant vortex core radius) until the vortex tube contacts the sphere boundary

layer (¢t < 9.4). The maximum positive lift coefficient Cf jmar1 is expressed by
CL,ma:cl = CVUnmaz (18)

where the proportionality constant ¢ = 0.8. For ¢t > 9.4, the relation between the lift
coefficient and v,,q; deviates slightly from linearity, but the maximum negative lift coef-
ficient CL maz2 is linearly proportional to vye; With ¢ = —1.66. After the lift coefficient
reaches its maximum negative value, it decays quickly towards zero because the vortex
tube vorticity is diffused in the sphere wake. The time averaged lift coefficient (averaged
over a time span between ¢ = 0.6 and the maximum time 24) for all values of vpas is
nearly zero (O(10~2)). As mentioned earlier, the behavior of Cr(t) during the period
0 < t < 0.6 is influenced by the initial flow perturbation, and thus its value during this
initial period is excluded from the averaging process. The root mean square CL,rms of the
lift coefficient as a function of time is also linearly proportional to v, with ¢ = 0.65 as
will be shown in table 4 in section 3.4.

Figure 10 shows the temporal development of the moment coeflicients for the sphere
under the same conditions of figure 9. The moment coeflicients are obtained for four
different values of Ve = 0.1,0.2,0.3, and 0.4.

As the vortex tube approaches the sphere, the downward shift of the front stagnation
point (due to the upWash) causes higher shear stress in the upper left region compared
to the lower left region generating a negative (clockwise) torque. At the same time, the
downward shift causes higher shear stress in the bottom and lower right regions compared
to the top and upper right regions as explained in section 3.2.1 generating a positive
torque. The two torques compete with each other and result in a net weak torque in the

interval 0 < ¢t < 9.
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As the vortex tube passes the sphere (9 < ¢t < 14), the upward shift of the front
stagnation point (due to the downwash) causes higher shear stress in the lower left region
compared to the upper left region generating a positive torque. At the same time, the
upward shift causes higher shear stress in the top and upper right regions compared to
the bottom and lower right regions as explained in section of 3.2.1 generating a negative
torque. However, the effect of this negative torque is diminished by the shear flow induced
by the vortex across the sphere which produces high shear stress at the bottom of the
sphere. As a consequence, a net high positive torque acts on the sphere. The maximum
positive moment coefficient Caf mar 0ccurs at ¢ = 11.4. Cpf mas is linearly proportional to
Umaz With a proportionality constant ¢ = 0.14.

When the vortex tube is relatively far downstream from the sphere (¢t > 15), the
positive torque due to the shear stress in the lower left region competes with the negative
torque due to the shear stress in the top and upper right regions. This results in a net weak
negative torque which becomes smaller as the vortex tube moves farther downstream. We
note that the torque depends only the distribution of the shear stresses (7.4 and 7,4) and
is relatively small compared to the lift force.

The time averaged moment coefficient (averaged over a time span between t = 0.6 and
24) for all values of vy, is nearly zero (0(107?)), and the root mean square Cpfrms of
the moment coefficient is approximately linearly proportional to v., with ¢ = 0.05.

‘Figure 11 shows the drag coefficients of the sphere as a function of time for the same
conditions of figure 9. The drag coefficients are computed for four different values of
Vmaz = 0.1,0.2,0.3, and 0.4.

As discussed earlier, the sudden placement of the sphere in the flow results in initially
large values of shear stress and pressure on the sphere, and hence a iarge drag as shown in
figure 11. Figure 5(e) shows that at about ¢ = 10 the center of the vortex tube is located
near the front stagnation point which is slightly below the point (z,y, z) = (0,0, —1). Due

to the low pressure at the center of the vortex tube, the pressure coefficient at the front
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stagnation point (Cp = 0.818) is lower than that of the axisymmetric flow past a sphere
without the vortex tube (Cpoazi = 1.107) as shown in figure 6(d). Also, the maximum
shear stresses in the upper and lower regions are lower than that of the axisymmetric
flow without the vortex tube. This causes the drag on the sphere to be lower than that
of the axisymmetric flow without the vortex tube. As the vortex tube moves around the
bottom of the sphere, the front stagnation point is shifted above the plane z = 0 due to
the downwash. Consequently, high pressure and high shear stress act in the upper and
lower left regions, respectively, as explained earlier in section 3.2.1. This increases the
drag during the period 10 < ¢ < 13.4. For t > 13.4, the drag approaches that of the
axisymmetric flow as the vortex tube moves further downstream.

The time averaged value of the deviation of the drag coefficient from that of the
axisymmetric flow past a sphere for all values of vpaz is nearly zero (0(107%)). The
unsteady drag coefficient of the axisymmetric flow past a sphere was computed for a

sphere suddenly placed in the uniform stream without the vortex tube.

3.3 Effects of the offset distance

We examine the effects of the offset distance on the flow field by varying d,;; while

using the same flow conditions of the preceding section 3.2.

3.3.1 Offset distance 1 <d 5y <4

The temporal behaviors of the lift and moment coefficients of the sphere for doss =1
are similar to those in the case of d,;; = 0. The main features distinguishing the case
of d,;; = 1 from that of doy; = 0 is that in the former, the vortex tube splits into two
parts when the vortex tube passes the sphere. The attraction of the vortex tube to the
positive vorticity in the boundary layer at the bottom of the sphere causes some portion

of the vortex tube moves around the bottom of the sphere, whereas the other portion of
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it moves on the top of the sphere, as shown in figures 12(a)-(h). Figures 12(a)-(h) display
the contour lines of y-component vorticity in the principal plane at ¢t = 9,10,11,12,13,
15,18, and 21 for Re = 100, dosy = 1, 0 = 1, and vpme, = 0.4. The contour values of
the vorticity are £0.4,40.5, £0.8, £1.4, +2. Due to its longer interaction with the sphere
for d,;; = 1 than for d,;y = 0, the magnitudes of the lift and moment coefficients of
the sphere are close to those in the case of d,;y = 0 despite its positive offset distance
initially. Equation (18) is approximately valid for Cr maz1; CL,maz2, CLrmss CM maz, and
CM rms With the same proportionality constants as in the case of d,55 = 0.

Figure 13(a) shows the drag coefficients of the sphere as a function of time for Re = 100,
d,ss = 1, and o = 1. The drag coefficients are obtained with two different maximum fluc-
tuation velocities due to the vortex tube, vy, = 0.1 and 0.2. The temporal behavior of
the drag coefficients is different from that of the case of d,sy = 0. The time averaged
value of the deviation of the drag coefficient from that of the axisymmetric flow past a
sphere for all values of vy, is not nearly zero but increased linearly as v,, increases.

The time averaged drag coefficient Cp 4y is expressed by

CD,ave = CD,axi + ,3 Umaz » (19)

where the constant 8 = 0.2, and Cp 4y is the time averaged value of the drag coefficient
in the case of axisymmetric low (Vpq.r = 0). The drag coefficients reach their maximum
at about ¢ = 10. The maximum drag coefficient Cp mqz is expressed also by equation (19)
but with 8 = 0.62, and Cp 4z here is the local value of the axisymmetric drag coefficient
at the time of Cp mqsr- At about t = 10, the center of the vortex tube is located above
the front stagnation point. Thus, the induced velocity due to the vortex tube adds its
magnitude to the base flow along the stagnation streamline, and so the dynamic pressure
ahead of the front stagnation point becomes higher than that of the axisymmetric flow
past a sphere. This causes the pressure at the stagnation point and the shear stresses in

the upper and lower left regions to be higher than those of the axisymmetric flow past a
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sphere. As a consequence, the drag is increased. When the offset distance is negative, the
reverse phenomena would occur, and the drag would be decreased. This will be discussed
later in section 3.3.2.

Figures 14(a) and 14(b) display the contour lines of y-component vorticity in the
principal plane at ¢ = 9 and 12 for Re = 100, dy5y = 2, 0 = 1, and vpa, = 0.4. The
contour values of vorticities are the same as those of previous sections. Figures 14(a)
and 14(b) show that the vortex tube passes above the sphere. The behavior of the lift
coefficients with time for dof; = 2,3, and 4 is similar to that of the case of d,;y = 0 and 1.
However, their magnitudes are smaller than those for d,;; = 0 and 1 and decay with doy;
exponentially as shown in figure 15, where the magnitude of the negative maximﬁm lift
coefficient and the maximum moment coefficient for Re = 100, 0 = 1, and vy4, = 0.2 are

presented as a function of dors. The positive maximum lift coefficient CL, oz for doss > 2

is expressed by

CL.maz1 = €1 Umaz €XP (C2|dos]), (20)
where ¢; = 0.99 and ¢, = —0.3. The negative maximum lift coefficient CL maz2 1s expressed
by equation (20) with ¢; = —2.64 and ¢; = —0.38, and the rms lift coefficient Cp, ;ms is
expressed also by equation (20) with ¢; = 0.88 and ¢, = —0.28.

The behavior of the moment coefficients with time for d,7; = 2,3, and 4 is also similar
to that of the case of d,;; = 0 and 1. However, their magnitudes are smaller than those

for d,s; = 0 and 1 and decay with a negative power of d,s; as shown in figure 15. The

maximum moment coefficient Cif,maz for dos; > 2 is expressed by

CM,ma:r: = C3 Vmaz |doff|m, (21)
where ¢3 = 0.185 and m = —1.501. The rms moment coefficient Cif,rms is expressed by

equation (21) with ¢; = 0.056 and m = —1.185.
Figures 13 (b), (c), and (d) show the drag coefficients of the sphere as a function of
time for d,; = 2,3, and 4, respectively, with Re = 100 and o = 1. The drag coeflicients
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are obtained with two different maximum fluctuation velocities due to the vortex tube,
Vmaz = 0.1 and 0.2. The drag coefficients reach their maximum at about ¢ = 10. The
maximum drag coefficient Cp mqz for dogy = 2 is higher than that for d,;; = 1 because the
magnitude of the induced velocity added to the base flow along the stagnation streamline
for d,;; = 2 is higher than that for d,sy = 1. We note that the radius of the vortex core
is greater than unity at ¢ = 10 due to the diffusion (and the maximum induced velocity
occurs at the edge of the vortex core) as shown in figure 3(a) for Re = 100, o = 1, and
Umaz = 0.4. Cpmaz becomes smaller as dogy is greater than 2. Cpmas’s for dogy = 2,3,
and 4 are expressed by equation 19 with § = 0.9,0.8, and 0.68, respectively. Cpave’s
for d,;; = 2,3, and 4 are expressed also by equation (19) with 8 = 0.31,0.33, and 0.32,
respectively. We note that the magnitude of the deviation of the drag coeflicient from
that of the axisymmetric flow decays slowly with d,ss, in contrast with fast decay of the

lift and moment coefficients with doy;.

3.3.2 Offset distance —1 > do5; > —4

Note that the sign reversal of the initial tube vorticity with the offset distance kept
positive is a mirror image of the case where the sign of the offset distance is changed and
the sign of the initial vorticity is kept constant. Therefore, we consider only change in
sign of the offset distance and keep the counter-clockwise rotation.

The behavior of the lift coefficients with time for —1 > d,;y > —4 is similar to that
of the case of d,;; = 0. However, their magnitudes are smaller than that for d,;;y = 0
with same vy, and decay exponentially with d,;; as shown in figure 15. The positive
maximum lift coefficient, the negative maximum lift coefficient, and the rms lift coefficient
for d,;; < —1 are expressed by equation (20) with ¢; = 0.942 and ¢; = —0.295, ¢; = —1.95
and ¢c; = —0.35, and ¢; = 0.74 and ¢, = —0.27, respectively.

The behavior of the moment coefficients with time for —1 > d,;; > —4 is similar
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to that of the case of d,;y = 0. However, their magnitudes are smaller than that for
do;; = —1 with same vUme, and decays with a negative power of | doss | as shown in
figure 15. The maximum moment coefficient and the rms moment coefficient are expressed
by equation (21) with ¢; = 0.09 and m = —1.264, and ¢; = 0.0318 and m = —1.047,‘
respectively.

Figure 16(a) shows the drag coefficients of the sphere as a function of time for Re =
100, d,ss = —1, and o = 1. The drag coefficients are obtained with two different maximum |
fluctuation velocities due to the vortex tube, vmqse = 0.1 and 0.2. The behavior of the drag
coefficients with time is different from that of the case of d,s; = 0. The time averaged
value of the deviation of the drag coefficient from that of the axisymmetric flow past a
sphere at each maximum fluctuation velocity is not near zero but is increased linearly in
negative value as the maximum fluctuation velocity becomes higher. The minimum drag
coefficients occur at about ¢ = 10. The minimum drag coefficient and the time averaged
drag coefficient are expressed by equation (19) with g = —0.78 and —0.2, respectively.

At about ¢ = 10, the center of the vortex tube is located below the front stagnation
point. Thus, the induced velocity due to the vortex tube subtracts its magnitude from
the base flow along the stagnation streamline, and so the dynamic pressure ahead of the
front stagnation point becomes lower than that of the axisymmetric flow past a sphere.
This causes the pressure at the front stagnation point and the shear stresses in the upper
and lower left regions to be lower than those of the axisymmetric flow past a sphere.
As a consequence, the drag is decreased. From this result, we deduce that if the sphere
were free to move rather than fixed, it would experience lower drag than that of a sphere
subjected to an axisymmetric flow unless the initial offset distance is large positive. The
lower drag will be caused by the upward motion of the sphere due to the upwash when the
vortex tube approaches it, and thus the center of the vortex tube will be located below
the front stagnation point of the sphere. This will cause lower dynamic pressure ahead of

the front stagnation point.
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Figures 16(b)-(d) show the drag coefficients of the sphere as a function of time for

d,ss = —2,-3, and —4 with Re = 100 and ¢ = 1. The minimum drag coefficients occur

at about ¢ = 10. The minimum drag coefficient Cp min for d,s; = —2 is lower than that
for d,;; = —1, because the magnitude of the induced velocity subtracted from the base
flow along the stagnation streamline is higher for d,;; = —2 compared to d,5; = —1.

The magnitude of Cp min becomes smaller as d,ss is less than —2. The minimum drag
coefficients for dosy = —2,—3, and —4 are expressed by equation 19 with g = —0.9, 0.8,
and —0.68, respectively. The time averaged drag coefficients for d5y = —2, -3, and —4
are expressed also by equation 19 with § = —0.28,—0.3, and —0.29, respectively. We note
that the magnitude of the deviation of the drag coefficient from that of the axisymmetric

flow decays slowly with d,y, in contrast with fast decay of the lift and moment coefficients

with dof_f.

3.4 Effects of the size of the vortex tube

We examine the effects of the size of the vortex tube on the flow field by performing
computations similar to those in section 3.2 for Re = 100, d,ss = 0, and five different
sizes of the vortex tube, 0.25 < o < 4 in addition to the base case ¢ = 1. Each simulation
is performed with two different values of vpqe,; = 0.1 and 0.3.

‘Table 4 shows the maximum positive lift coefficient, the maximum negative lift co-
efficient, the rms lift coefficient, the maximum moment coefficient, and the rms mo-
ment coefficient as a function of v, for six different initial radii of the vortex tube,
0=4,3,2,1,0.5, and 0.25. All the coeflicients are linearly proportional to v,.. at each o.
When o > 2, CL maz1 and CL yms become independent of o, but the magnitudes of Cr maz2,
CM maz, a0d Cp rms for o = 4 are smaller than those for o = 2 and 3. When o approaches
zero, all the coefficients tend to be proportional to (0 vmaez) Which is the circulation of the

vortex tube divided by 27 (I, = 270Vye;). For example, CL rpms is expressed by
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CL,rms = €1 Umazx, 2<c< 4

= CyUmap 0", 025<0 <2, 0.75>n>05, (22)-

where the constant ¢; = 1 and ¢; = 0.65, and n depends on ¢ and should approach unity
as o reaches zero. For CL mas1, ¢ = 1.1 and ¢ = 0.8. CL mas2, CMmaz, and CpM,rms for
o < 3 are also expressed by equation (22) with ¢; = —2 and ¢; = —1.66, ¢; = 0.14 and
¢z = 0.14, and ¢; = 0.055 and ¢; = 0.05, respectively. The time averaged value of the
deviation of the drag coefficient from that of the axisymmetric flow past a sphere for all
values of o is nearly zero (0(107%)).

We note that Cr,mar2, CMmaz, a0d Carrrms for o = 4 are, respectively, smaller than
those for o = 2 and 3, and the reason is explained as follows. When the initial size of the
vortex core is considerably larger than the sphere size (o > 4), the effect of the shear flow
(induced by the passage of the vortex tube) across the sphere diminishes. We explained
in section 3.2.1 that the magnitude of Cf maz2 depends on the combined effects of the
downwash and the shear flow across the sphere due to the vortex tube. As a result, the
magnitude of Cf mas2 decreases and approaches Cfmas1 as 0 >> 1. CM,maz and CM,rms
also decrease for the same reason. In addition, when the initial size of the vortex core is
larger than the sphere size, the effect of the wake behind the sphere on the vortex tube
diminishes. As a consequence, the magnitudes of the lift and moment coefficients decay
slowly towards zero after they peak near the time of passage of the vortex tube center by
the plane z = 1.

Summarizing the effects of the vortex size, the maximum positive lift coefficient and
the rms lift coefficient depend only on the circulation T', at small values of o while they
depend only on ¥m,, (and not o) at large values of 6. For mid-range values of o, they
depend on both ¢ and vpe, (or equivalently both ¢ and T',).

In section 3.3, we investigated the effect of the offset distance on the flow field for
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Re = 100 and 0 = 1. We now examine the effect of initial offset distance of the vortex
tube on the lift and moment coefficients of the sphere as a function of the size of the tube
at Re = 100. The values of CL maz1, CLmaz2, and CLrms Of the sphere for initial offset
distance of the vortex tube in the range of —0.5\/c < doss < /o are within 5% difference
from their values for do;; = 0. On the other hand, Carmaz and Cis,rms of the sphere for
initial offset distance of the vortex tube in the same range vary by 13% from their values

for doff =0.

3.5 Effects of Reynolds number

Computations similar to those in section 3.2 were performed for four different Reynolds
numbers in the range of 20 < Re < 80, d,5s = 0, and 0 = 1 with vje, = 0.2 in addition to
the base case Re = 100. We also performed the same calculation with two different values
of Upmez = 0.1 and 0.3 and found that CLmaz1, CLmaz2s CLrmss CM,maz, and Cpfrms are
linearly proportional to v, for each Reynolds number. Figures (17)-(20) show results

for vz = 0.2.

Figure 17 shows the total maximum positive lift coefficient and the coefficients due
to pressure and viscous contributions as a function of Reynolds number for & = 1 and
dys; = 0 with vy, = 0.2. The coefficient due to pressure contribution is a little higher
than that due to viscous contribution at Reynolds number 100. Both coefficients due to
pressure and viscous contributions increase as Reynolds number decrease, but the viscous
coefficient becomes greater. The total maximum positive lift coefficient increases with a
negative power of Reynolds number as Reynolds number decreases as will be shown in

figure 19 on a log-log scale and is expressed by
CL,maa:l =A Umaz ReP ) (23)

where the constant A = 3.5 and P = —0.32.

Figure 18 shows the total maximum negative lift coeflicient and the coefficients due
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to pressure and viscous contributions as a function of Reynolds number for ¢ = 1 and
doss = 0 with vpa = 0.2. The magnitude of the coefficient due to pressure contribution
is 2.38 times higher than that due to viscous contribution at Reynolds number 100. As
mentioned in section 3.2, the sphere experiences the maximum negative lift coefficient
whose magnitude is greater than the maximum positive lift coefficient when the vortex
tube passes the sphere, because the vortex tube produces high fluid velocity gradient
across the sphere as well as downwash on the sphere. (We note that the shear flow effect |
induced by the vortex tube would diminish when the size of the vortex tube becomes
large.) Thus, the pressure contribution is much higher than the viscous contribution
to the total maximum negative lift coefficient. The magnitude of the coefficient due to
viscous contributions increases as Reynolds number decreases, on the other hand, that
due to pressure contribution decreases as Reynolds number decreases. As a consequence,
the magnitude of the total maximum negative lift coefficient is not sensitive to the change
of the Reynolds number and slowly increases as Reynolds number decreases.

Figure 19 shows the rms lift coefficient and also the maximum positive lift coefficient as
a function of Reynolds number on a log-log scale for o = 1 and dogy = 0 with vper = 0.2.
The rms lift coefficient increases with a negative power of Reynolds number as Reynolds
number decreases and is expressed by equation (23) with A = 23 and P = -0.275
for ¢ = 1. The effect of Reynolds number (20 < Re < 80) on the lift coeflicient was
investigated for the vortex size larger than 0 =1 (2 < o < 4). The maximum positive lift
coefficient and the rms lift coefficient are linearly proportional only to vme, and indepen-
dent of o when o > 2 at fixed Reynolds number as in section 3.4 for Re = 100. The rms
lift coefficient is expressed by equation (23) with A = 8.1 and P = —0.45 and written

again here for later use.
C'L,rm.s =8.1 Umaz Re_o.ﬁ y 2 S g S 4. (24)

For the maximum positive lift coefficient, A = 8.9 and P = —0.45.
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Figure 20 shows the maximum moment coefficient and the rms moment coefficient as
a function of Reynolds number for ¢ = 1 and do5y = 0 with vpme. = 0.2. The maximum
moment coefficient and the rms moment coefficient are affected by only the viscous effect
and increases with a negative power of Reynolds number as Reynolds number decreases.
CM,maz and Cpf,rms follow the form of equation (23) with A = 1.95 and P = —0.56 for
the former, and A = 1.05 and P = —0.665 for the latter for ¢ = 1. The effect of Reynolds
number ( 20 < Re < 80 ) on the moment coefficient was investigated for 2 < ¢ < 4.
The behavior of the moment coefficient at each Reynolds number is similar to that of the
moment coefficient at Re = 100 which was explained in section 3.4. CuM maz and Crfrms
follow the form of equation (23) with A = 5.5 and P = —0.83 for the former, and A = 3.1
and P = —0.88 for the latter for 2 < o < 3.

The variation of the lift and moment coefficients for —0.5/7 < d,ss < /o from those
for d,ss = 0, which is given in section 3.4 for Re = 100, decreases at fixed o as Reynolds
number decreases. For example, at Re = 20, the difference in the lift coefficient is 4%
and that in the moment coefficient is 10%.

We investigate the lift, moment, and drag coeflicients at Reynolds number 20 in order
to find out Reynolds number effect in more detail. Figure 21 shows the lift coefficients of
the sphere as a function of time for Re = 20, dos; = 0, and ¢ = 1. The lift coefficients
are obtained with four different maximum fluctuation velocities due to the vortex tube,
Vmaz = 0.1,0.2,0.3, and 0.4. The maximum positive lift coefficient Cr maez1 occurs at
t = 6.6, and the maximum negative lift coefficient Cf maz2 occurs at ¢ = 12.5. The lift
coefficient is linearly proportional to the maximum fluctuation velocity (or the circulation
of the vortex tube) at each time over the whole time computed (0 < ¢ < 24). This
shows that the nonlinear effect at Re = 20 is much less than that at Re = 100. In
contrast to figure 13 which shows the lift coefficient for Re = 100, figure 21 shows that
the lift coefficient decays slowly to zero after it attains the maximum negative value. This

indicates that for Re = 100 viscous diffusion in the wake is much stronger than that
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in the upstream; on the other hand, viscous diffusion is rather uniformly important all
around the sphere at Re = 20 compared to Re = 100. The behavior of the moment and
drag coefficients with time is similar to that of the case of Re = 100. The time averaged
lift and moment coefficients are nearly zero (O(10~2) and O(1072), respectively), and the
time averaged drag coefficient is close to that of the axisymmetric flow without the vortex

tube (The difference between them is O(107%)).

One of the reviewers noted that some of our results can be explained using dimensional

analysis as follows. The lift force on the sphere can be expressed in a functional form as
Fi(t') = f(Upor 'y 10, T, 0"y 5 )

From dimensional analysis, it follows that

Fr,
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CL(t)= =f( )=f(¢1)¢27¢37¢4; t)?

where ¢; are the four parameters appearing on the left hand side of the last equal sign. If
Reynolds number and the dimensionless offset distance are fixed, Cr(t) will be a function
of ¢1, ¢, and ¢. Furthermore, when ¢’/al, is small, we expect that a;, is more important
than o’. Then Cf, should be a function only of ¢;/¢2 and ¢ yielding:
I‘f
Cr(t) = f(m 1) =f(T;1). (25)
In the opposite limit, a/, should be unimportant and
1"/
Cr(t) = f(@-, i 1) = f(vmaz; 1) - (26)
Equations (25) and (26) are consistent with our results in section 3.4.
Finally, we discuss the effect of the initial location of the vortex tube upstream from

the center of the sphere. We have shown earlier that the maximum positive lift coefficient

is expressed at given o and Re as CLmaz1 = CVUmas When the initial location of the vortex,
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1, is 10 radii. For a different initial location, say I*, the equation for the maximum positive

lift coefficient should be modified as follows.

CLmazi = CUmas
o* .
= €C— Ungr
10,040 — 1) ,
= C \/1 - Re o2 Vmaz
= ¢ Vpgg s (27)

where we used Vpmqz /e, = 0°/0 and ¢*2 — ¢? = 10.04(I* — [)/Re, which are obtained
from the evolution of a point vortex in a viscous fluid (Batchelor (1967)). v},,, denotes
the maximum fluctuation velocity due to the vortex tube whose initial location is I* radii
upstream from the center of the sphere. Note that the proportionality constant ¢ is now
modified as ¢* for the new initial location of the vortex I*.

We examined the accuracy of equation (27) by performing computations for I* = 8
and 12 with the same parameters as used in section 3.2.1 except the initial location of
the vortex tube. The magnitude of CI, yaz1 obtained from equation (27) differs by 0.2%
from that of the full computations. The equation of the rms lift coefficient should be also
modified as equation (27) for the new initial location of the vortex tube. In addition, the
time span, %4, over which averaging the lift coefficient is performed should be modified

according to t¥ _ = taee + (I* = 1).

ave

4 Conclusions

As a first step towards better understanding the physics of interaction between a

particle and the turbulent carrier flow, we have investigated numerically the unsteady,
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three-dimensional, incompressible, viscous flow interactions between a vortical (initially
cylindrical) structure advected by a uniform free stream and a spherical particle suddenly
placed and held fixed in space for a range of particle Reynolds numbers 20 < Re <
100. The counter-clockwise rotating cylindrical vortex tube is initially located ten ra,dii‘
upstream from the center of the sphere.

A summary of our findings and their applications is provided as follow.

(i) One significant finding in our study is that the rms lift coefficient for a particle is
linearly proportional to the upwash (or downwash induced by the vortex tube motion) on
the particle normal to the direction of the free stream in our case (or the direction of the
particle motion in the case of a free particle) and is independent of the size of the vortex
tube when the size of the vortex is greater than that of the particle, 2 < o < 4. This result
can be applied to turbulent flows containing small concentration of particles in order to
obtain the rms lift force on a particle. A turbulent flow possesses a wide spectrum of
eddy sizes. The large eddies contain most of the turbulent kinetic energy and produce
high velocity fluctuations, and so they are responsible for the dispersion of particles. The
particle size, at the extremes, may be comparable to either the integral length scale or to
the Kolmogorov length scale. When the size of particle is comparable to the integral length
scale, the rms lift coefficient of the particle is obtained by equation (24). Furthermore,
our results tend to support the idea that equation (24) would be applicable to the case
of an eddy much larger than the particle. Thus, when the size of particle is comparable
to the Kolmogorov length scale, the rms lift coefficient of the particle can be calculated
approximately by equation (24), where vy, is the maximum velocity fluctuation due to
an eddy of size comparable to the integral length scale. The time during which the particle
is influenced by the eddy is of the order of the eddy life time.

The deflection of the particle path will depend on the magnitude of the rms lift coef-
ficient and the ratio, p,, of the particle density to that of the carrier fluid (CL = £p-A,

where A is the dimensionless acceleration of the particle due to the lift force). This result

35




provides a simple method to estimate the deflection of particle trajectory in the dilute
particle-laden turbulent flow. Equation (24) and the nondimensionalized Newton’s second
law show that the deflection increases slowly as Reynolds number of the particle decreases.

(ii) The magnitude of the rms moment coefficient of the particle is one order of magni-
tude less than that of the rms lift coefficient when Re > 20. Furthermore, when the initial
size of the vortex core is considerably larger than the sphere size (o > 4), the effect of the
shear flow (induced by the passage of the vortex tube) across the sphere diminishes and
the torque on the particle decreases. Thus, the torque on the particle might be negligible
in many applications.

(iii) When a vortex tube advected by a uniform free stream approaches a sphere, the
sphere experiences lower drag than that of a sphere subjected to an axisymmetric flow
if the sphere were free to move rather than fixed, unless the initial offset distance of the
vortex tube is large positive, as explained in section 3.3.2. The lower drag is caused by
the upward motion of the sphere due to the upwash of the approaching vortex tube, and
thus the center of the vortex tube would be located below the front stagnation point of
the sphere. This causes lower dynamic pressure ahead of the front stagnation point.

(iv) Some interesting unsteady phenomena in the near wake have been discovered.
The shape of the near wake behind the spherical particle is controlled by the pressure
difference between the top and bottom of the near wake as was indicated by Kim et al
(1993). The instantaneous flow patterns around a spherical particle in a turbulent flow
would include some of those described in this paper. For example, our recent results (to be
published), from a study of the interactions between a vortex pair advected by a uniform
free stream and a sphere, show that the streamlines are similar to those described in the
present paper.

We are also studying the heat and mass transfer for a droplet interacting with an
array of vortices in high-temperature and high-pressure environment such as that in a gas

turbine combustor.
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N1XN2XN3

Cpp

Cov

Cp  C%

Re =20
21 x 21 x 21
31 x 31 x 31
41 x 41 x 41

Re =100
21 x 21 x 21
31 x 31 x 31
41 x 41 x 41

1.048
1.039
1.037

0.560
0.535
0.526

1L.777
1.740
1.731

0.590
0.582
0.581

2.825
2.779
2.768 2.74

1.150
1.117
1.107 1.09

Table 1. Drag coefficients as a function of grid density
at Re = 20 and 100, where * denotes the data
from the correlation of Clift et al. (1978).




N1 x Ny x N3 Py P, 0, :
Re =20

21 x21 x21 0.668 -0.201 180

31 x31x31 0707 -0.178 180

41 x 41 x 41 0.721 -0.171 180 180
Re =100

21 x 21 x 21 0.554 -0.0938 124.09

31 x31x31 0.554 -0.0831 125.62

41 x 41 x 41 0.554 -0.0792 126.16 126.5

Table 2. Pressure at the front and rear stagnation points
and the separation angle measured from the front
stagnation point as a function of grid density
at Re = 20 and 100, where * denotes the data
from Taneda (1956) and the correlation of
Clift et al. (1978).




N1 X Na X N3 CrLmaz2,p CLmas2y CLmaz2
Re =20

21 x21x21  -0.336 -0.359  -0.695

31 x31x31 -0.358 -0.363  -0.722

41 x 41 x 41  -0.362 -0.363  -0.725
Re =100

21 x 21 x21  -0.336 -0.159  -0.495

31 x31x31 -0433 -0.186  -0.619

41 x 41 x 41  -0.476 -0.192  -0.668

51 x 51 x 51  -0.494 -0.191  -0.685

Table 3. Maximum negative lift coefficients as a function of
grid density at Re = 20 and 100.




Umaz CL,mazl CL,maz2 CL, rms CM,maz CM,rms

oc=4
0.3 0.337 -0.566 0.307 0.0361 0.0161
0.1 0.113 -0.190 0.102 0.0121 0.00546
c=3
0.3 0.338 -0.604 0.299 0.0414 0.0169
0.1 0.114 -0.201 0.0997 0.0139 0.00577

0.3 0.318 -0.611 0.271 0.0455 0.0169
0.1 0.107 -0.203 0.0907 0.0155 0.00593

0.3 0.238 -0.500 0.195 0.0410 0.0138
0.1 0.0810 -0.165 0.0658 0.0145 0.00514
c=0.
0.3 0.147 -0.322 0.119 0.0290 0.00953
0.1 0.0499 -0.106 0.0402 0.0103 0.00355
o=0.25
0.3 0.0815 -0.177 0.0660 0.0175 0.00587
0.1 0.0275 -0.0583 0.0221 0.00604 0.00210

Table 4. Maximum positive lift coefficient, maximum negative
lift coefficient, root mean square of the lift coefficient,
maximum moment coefficient, and root mean square of
the moment coefficient as a function of Umaz
for six different radii of the vortex tube,
oc=4,3,2,1,0.5, and 0.25.




Figure Captions

Figure 1. Flow geometry and coordinates

Figure 2. Comparison of tangential velocities induced by a point vortex and a vortex tube

forT', =2.5and o =1.

Figure 3. (a) Velocity and (b) vorticity fields due to a vortex tube as a function of
radial distance and time for Re = 100, ', = 2.5, and 0 = 1.

Figure 4. Pressure and shear stress distributions around the sphere in the x-z plane
of symmetry as a function of grid resolution at ¢ = 12

for Re =100, doss =0, 0 =1, and vy = 0.4.

Figure 5. Pseudo-streamlines (left column) and contour lines of y-component vorticity
(right column) in the principal plane at (a) t =0, (b) 1, (c) 6, (d) 9, (e) 10,
(f) 11, (g) 12, (h) 13, (i) 15, (j) 18, (k) 21, and (1) 30 for Re = 100, d,s5 =0,

o =1, and vy, = 0.4.

Figure 6. Pressure and shear stress distributions around the sphere
in the principal plane at (a) t =1, (b) 6, (c) 9, (d) 10, (e) 11, (f) 12, (g) 13,
(h) 15, (i) 18, and (j) 21 for Re = 100, d,5s = 0, 0 = 1, and vpqr = 0.4.

—— , upper ;—— —, lower.

Figure 7. Tangential velocity profile, ug(r), at § = 90° on the top
and the bottom of the sphere in the principal plane at { = 12.

Figure 8. Two views of a three-dimensional contour surface of wy, = 0.2 at ¢ = 20 for the flow
depicted in figure 5; (a) a side view looking normal to the principal plane

(b) a view looking down with an acute angle toward the y-z plane.

Figure 9. Lift coefficients of the sphere as a function of time and vqx

for Re = 100, doyy =0, and o0 = 1.




Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Moment coefficients of the sphere under the same conditions of figure 9.
Drag coefficients of the sphere under the same conditions of figure 9.

Contour lines of y-component vorticity in the principal plane
at (a) t =9, (b) 10, (c) 11, (d) 12, (e) 13, (f) 15, (g) 18, and (h) 21
for Re = 100, dosy = 1, 0 = 1, and vpar = 0.4.

Drag coefficients of the sphere as a function of time and vz for

(a) doss = 1, (b) 2, (c) 3, and (d) 4 with Re =100 and o = 1.

Contour lines of y-component vorticity in the principal plane

at (a) t =9 and (b) 12 for Re = 100, d,f; = 2, 0 = 1, and vmaz = 0.4.

Magnitude of CL maz2 and Ca,maz as a function of doss

for Re = 100, 0 = 1, and vpey = 0.2.

Drag coefficients of the sphere as a function of time and vmas for

(a) dosy = —1, (b) =2, (c) =3, and (d) —4 with Re =100 and ¢ = 1.

Total maximum positive lift coefficient and the coefficients due to
pressure and viscous contributions as a function of Reynolds number

for dos; = 0 and ¢ = 1 with Ve = 0.2.

Total maximum negative lift coefficient and the coefficients due to
pressure and viscous contributions as a function of Reynolds number

under the same conditions of figure 17.

Root mean square of the lift coefficient and maximum positive lift coefficient

as a function of Reynolds number under the same conditions of figure 17.

Maximum moment coefficient and root mean square of the moment coefficient

as a function of Reynolds number under the same conditions of figure 17.




Figure 21. Lift coefficients of the sphere as a function of time and v,

for Re =20, d,5y = 0, and o = 1.
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Unsteady Flow Interactions Between a Pair of Advected
Cylindrical Vortex Tubes and a Rigid Sphere *

I. Kim! S. Elghobashif and W. A. Sirignano®

Department of Mechanical and Aerospace Engineering
University of California, Irvine

Abstract

This study concerns the detailed three-dimensional,
viscous, incompressible interactions of vortical struc-
tures with a rigid sphere. A pair of vortical structures
(initially cylindrical) advect past a sphere. Navier-
Stokes equations describe the unsteady viscous flow
field. Finite-difference computations yield flow prop-
erties plus temporal behavior of lift, drag, and moment
coefficients of the sphere. Lift and moment coefficients
are shown to be linearly proportional to the maximum
velocity fluctuation. Effects of Reynolds number, initial
vortex size, and initial vortex configuration are deter-
mined. Lift coefficients are used to estimate spherical
particle deflection in turbulent flows; deflection is found
to increase slowly as Reynolds number decreases. The
moment coefficient is an order of magnitude less than
the lift coefficient implying that torque is often negligi-
ble.

Nomenclature

al, dimensional sphere radius

CLmaz1 Mmaximum positive lift coefficient
CrLmaz2 Mmaximum negative lift coefficient
CL,rms rms lift coefficient

doss initial offset distance normalized by aj,
N1, N2, N3 numbers of grids in £, 7, ¢ directions
Re Reynolds number based on sphere diameter
u, v, W velocities in the x, y, and z direction
Umaz maximum fluctuation velocity induced
by one vortex tube
Vmazt total maximum fluctuation velocity induced

by a pair of vortex tubes

U, dimensional freestream velocity
t time normalized by a,/U%,
z,Y,2 Cartesian coordinates
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jcan Institute of Aeronautics and Astronautics, Inc. with
permission.
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Greek symbols

&,n¢ nonorthogonal generalized coordinates

o radius of vortex tube normalized by a,

T; circulation of vortex tube normalized
by U, and a,

wy y-component of vorticity vector

Superscript

! dimensional quantity

Subscript

0 initial quantity

1. Introduction

Particle-laden turbulent flows are important in many
natural and engineering applications such as atmo-
spheric dispersion of pollutants, combustion systems,
and transport of suspended substances in slurries or
pneumatic systems. The fluid may be either gas or
liquid containing particles, droplets, or bubbles. The
geometric scale of the flow may be as large as weather
patterns in the atmosphere of a planet, or as small as
the veins transporting blood cells in the body’s circu-
latory system.

In general, there is no analytical solution to the equa-
tion of motion of a single particle in a laminar or tur-
bulent flow due to the nonlinear nature of the equation.
This has led to extensive application of numerical ap-
proaches to study the particle motion in a turbulent
flow. When the concentration of particles in a flow is
small, the particle-particle interaction such as collisions
or repulsions can be neglected, and the flow-particle
interaction is dominated by the time response of the
individual particles. This type of flow is classified as
a dilute dispersed flow. Extensive research has been
performed to characterize a variety of dilute dispersed
flow fields. Review articles by Lumley [1], Crowe [2],
and Faeth [3] provide a summary of current research
results and directions.

Most studies to predict particle motion in a tur-
bulent flow employ the Eulerian-Lagrangian approach,
where particles are considered as point sources in the
Navier-Stokes equations. After the local fluid veloc-
ities are obtained from the Navier-Stokes equations,
the particle motion is obtained by solving the BBO




(Basset-Boussinesq-Oseen) equation. The drag force in
that equation consists of two terms, namely, the quasi-
steady Stokes drag and the Basset correction. Strictly,
this correction is only correct analytically as a correc-
tion to the linear theory developed for Stokes flow and
valid only for very low particle Reynolds number. Thus,
it is not possible in that approach to obtain the actual
force and torque on the particle, heat and mass transfer
rate of the particle, and the details of the flow around
the particle including near wake due to the turbulent
velocity fluctuation in a finite-Reynolds-number-flow.
An alternative is to examine the details of the inter-
action between a particle and its surrounding turbu-
lent flow by solving numerically the full Navier-Stokes
equations around an individual particle with the ap-
propriate boundary conditions and employing a simple
mathematical description for turbulent velocity fluctu-
ation.

A turbulent flow possesses a wide spectrum of eddy
sizes. For example, in a typical gas turbine combus-
tor where the Reynolds number is of the order of 10°
and the integral length scale is of the order of 0.1m,
the smallest (Kolmogorov) length scale, 7, is about
100um, which is comparable to the size of a typical fuel
droplet. Motion at the large (integral) length scale con-
tains most of the turbulent kinetic energy and governs
the dispersion of particles (or droplets). On the other
hand, fluid motion at the Kolmogorov length scale ex-
periences the largest strain rates and scalar gradients
in the flow. The largest scalar gradients control the
important phenomena of heat and mass transfer and
chemical reaction.

As a first step towards better understanding the in-
teractions of a particle with a turbulent flow, Kim, El-
ghobashi & Sirignano [4] studied the three-dimensional
flow interactions between a vortical (initially cylindri-
cal) structure advected by the free stream and a spher-
ical solid particle held fixed in space. The particle
Reynolds number based on the freestream velocity and
the particle diameter was in the range 20 < Re < 100.
The initial size of the cylindrical vortex tube was in the
range 0.25 < o < 4, where o is the radius of the vortex
tube normalized by that of the particle. They found
that the rms lift coefficient of the sphere is linearly pro-
portional to the circulation of the vortex tube at small
values of 7, on the other hand, at large values of o, the
rms lift coefficient is linearly proportional to the max-
imum fluctuation velocity induced by the vortex tube
but independent of o.

We study in this paper the interactions between a
pair of vortex tubes and a rigid sphere. Our main goal
is to generalize the findings of Kim et al. [4] by deter-
mining:

1. the details of the interaction of a pair of vortex
tubes with each other and with the sphere in a
viscous incompressible flow

2. the relationship between the lift coefficient of the

sphere and the maximum fluctuation velocity in-
duced by a pair of vortex tubes

3. the effects of Reynolds number, vortex size, and

initial offset distance of the vortex.

The detailed study of the interactions between the
particle and the unsteady velocity field provides funda-
mental information about the flow behavior which can
be used in developing mathematical models for two-
phase flows.

2. Formulation and numerical solution

2.1 The flow description

Consider the time-dependent, three-dimensional, in-
compressible, viscous flow interactions between a pair
of initially cylindrical vortex tubes and a solid sphere.
The vortex tubes are moving with the laminar free
stream, and a sphere is suddenly placed and held fixed
in space as shown in Figure 1. The initial offset dis-
tance, d/, 77, denotes the shortest distance between the
initial vortical axis and the y-z plane which is parallel
to the free stream. All the variables are nondimension-
alized using the sphere radius a/, as the characteristic
length and U/, as the characteristic velocity, where the
superscript / denotes dimensional quantity. The pair
of cylindrical vortex tubes, whose diameters are of the
same size and of the order of the sphere diameter, are
initially located ten radii upstream from the center of
the sphere. The effects of the vortex tube on the sphere
are negligible at this initial distance because the mag-
nitude of the initial velocity field induced by the vortex
tubes is less than 2 percent of the free stream veloc-
ity. Far upstream, the flow is uniform with constant
velocity Ul k parallel to the y-z plane. We have one
symmetry plane, the x-z plane, as seen in Figure 1. A
second symmetry plane (y-z) exists when the two vor-
tices have opposite rotations. Our general formulation
does not take advantage of this second symmetry.

Two coordinate systems are used in our formulation:
the Cartesian coordinates (x,y,z) and the nonorthogo-
nal generalized coordinates (§,7,¢). The origin of the
former coincides with the sphere center. £ is the radial,
n is the angular, and ¢ is the azimuthal coordinates.
The nonorthogonal generalized coordinate system can
be easily adapted to three-dimensional arbitrary ge-
ometries. In the present study, a spherical domain is
used, and the grid reduces to an orthogonal, spheri-
cal grid. The grids are denser near the surface of the
spherical particle, and the grid density in the radial
direction is controlled by the stretching function devel-
oped by Vinokur [5]. Due to symmetry, the physical
domain is reduced to a half spherical space. The do-
main of the flow isbounded by 1 <€ < N1, 1 <7< Ny,
1 < ¢ £ N3, where £ = 1 and N; correspond, respec-
tively, to the sphere surface and the farfield boundary
surrounding the sphere; 7 = 1 and Ny denote, respec-
tively, the positive z-axis (upstream) and the negative




z-axis (downstream); ¢ = 1 and Nj refer, respectively,
to the x-z plane in the positive x-direction and the x-
z plane in the negative x-direction. Uniform spacing
(66 = én = 8¢ = 1) is used, for convenience, for the
generalized coordinates.

The initial vortex tube has a small core region with
a radius ¢ (normalized by the sphere radius). This core
is defined such that the initial velocity induced by the
vortex tube approaches zero as the distance from the
center of the vortex tube goes to zero, and at distances
much greater than o, the induced velocity approaches
that of a point vortex. We use the vortex tube con-
struction of Spalart [6], which has the following stream
function:

Yo(z,2,t=0) = —%In[(z —2;)2 4 (z—-z) +0,
where T; is the nondimensional circulation around the
vortex tube at radius ¢ and at the initial time. T; is
positive when the vortex tube rotates counterclockwise,
and z; and z; denote the location of the center of the
vortex tube. The circulation around a circular path far
away from the center of the vortex is given by I';; =
2T;. The stream function for a pair of vortex tubes is
given by

2
¢v(z, z,t= 0) = -—Z -g—;r-ln[(z—zj)2+(z_ zj)2+a2]
j=1

(1)

2.2 Governing equations and boundary condi-
tions

The continuity and momentum equations and the ini-
tial and boundary conditions are nondimensionalized
using the sphere radius a), as the characteristic length
and U., as the characteristic velocity.

VvV =0 (2

S VY ==Vp+ Z V. 3)

The governing equations (2) and (3) are cast in terms
of the generalized coordinates (£,7,() to treat a three-
dimensional body of arbitrary shape. The numerical
integration is performed using a cubic computational
mesh with equal spacing (66 = §n=6( = 1).

The velocities on the sphere surface are zero due to
the no-slip condition, and the pressure on the sphere is
obtained from the momentum equation. The boundary
conditions are

o _ 25
dn = Re On?’

p=0,u=v=0,w=1atf=N;, Nom << N>

®)

u=v=w=0até=1 (4

fu v 8

w
P-—-0155—55—6—6—03"-5—1\’1,1371<sz
(6)
31)_314_212_ _ _ _
a_c'—ac“ac“oav"oatc—lic—N& (7)

where u, v, and w are the velocities in the x, y, and z
direction, respectively, V;, is the velocity in the direc-
tion normal to the sphere surface, and p is the pressure.
n denotes the direction normal to the sphere surface,

8/on = \[€2 + €3 +£20/0¢, and n = Nam denotes the

mid-plane between n = 1 and N;. Equation (7) corre-
sponds to the symmetry conditions and zero v velocity
in the x-z symmetry plane. Conditions guaranteeing
continuity in the n direction for p, u, v, and w on the
axes n = 1 and 7 = N, are also imposed.

In order to start the numerical solution of equations
(2) and (3), we provide initial velocity by superposing
the flow fields due to the uniform stream and the vortex
tube and the no-slip condition on the sphere surface:

Oy _ _ Oy
8z’ vo=0, wo=1+ Oz

except at £ =1 (8)

Po=0, uo=—

Po=0, uyp=vo=w, =0 atf=1, 9)
where 1, is given by equation (1).

The only nondimensional groupings appearing in the
equations and initial and boundary constraints are the
sphere Reynolds number, vortex tube radius, offset dis-
tance, and vortex circulation (or vortex Reynolds num-
ber).

The drag, lift, and moment coefficients are evaluated
in dimensional form as follows.

Fl = / —p'nkdS + / ner'skdS (10)
S S

134 =/—p’n-i s’ + /n-v"*i as’ (11)
s s

M = / r x 7' dY, (12)
S

where S’ denotes the surface of the sphere, n is the
outward unit normal vector at the surface, »’ is the po-
sition vector from the center of the sphere, and 7/ is the
viscous stress tensor. The lift force is assumed positive
when it is directed toward the positive x-axis. Due to
symmetry, only the y-component of the moment is non-
zero and is assumed positive in the counter-clockwise
direction.

The nondimensional coefficients of drag, lift, and mo-
ment are defined respectively as
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2.3 Numerical solution

A three-dimensional, implicit, finite-difference algo-
rithm has been developed to solve simultaneously the
set of the discretized partial differential equations. The
method is based on an Alternating-Direction-Predictor-
Corrector (ADPC) scheme to solve the time-dependent
Navier-Stokes equations. ADPC is a slight variation of
Alternating-Direction-Implicit (ADI) method and im-
plemented easily when embedded in a large iteration
scheme (Patnaik [7]). The control volume formulation
is used to develop the finite-difference equations from
the governing equations with respect to the general-
ized coordinates (&, 7,¢). An important part of solving
the Navier-Stokes equations in primitive variables is the
calculation of the pressure field. In the present work,
a pressure correction equation is employed to satisfy
indirectly the continuity equation. The pressure cor-
rection equation is of the Poisson type and is solved by
the Successive-Over-Relaxation (SOR) method.

The overall solution procedure is based on a cyclic
series of guess-and-correct operations. The velocity
components are first calculated from the momentum
equations using the ADPC method, where the pressure
field at the previous time step is employed. This esti-
mate improves as the overall iteration continues. The
pressure correction is calculated from the pressure cor-
rection equation using the SOR method, and new es-
timates for pressure and velocities are obtained. This
process continues until the solution converges at each
time step.

3. Results and discussion

3.1 Numerical accuracy

Here we examine the flow generated by an impul-
sively started solid sphere in a quiescent fluid at two
Reynolds numbers: 20 and 100. The time-dependent
solution converges asymptotically to a steady-state
which is in good agreement with the available exper-
imental data and correlations. Refer the details for nu-
merical data to Kim et al. [4]. Although the solution
in these test cases are axisymmetric, none of the three
velocity components in our formulation becomes iden-
tically zero. Therefore, the three-dimensional solution
scheme is fully exercised here. The 51 x 51 x 51 grid is
used in the following calculations.

3.2 Interactions of a pair of vortex tubes of like

rotation and a sphere

Now consider in particular the interactions of a pair
of vortex tubes advected by the free stream and a
sphere suddenly placed in the flow and held fixed in
space. The two vortex tubes are initially of the same
size and cylindrical shape rotating counter-clockwise as
shown in Figure 1. The two vortex tubes are separated
by the same distance from the y-z plane so that the
offset distance of one vortex tube is minus the offset
distance of the other. The center of the each vortex
tube is located at 10 sphere-radii upstream from x-y
plane containing the center of the sphere. The base
case calculation is that of Re = 100,d,7y = £1.5, and
oc=1.

Initially each vortex tube has the maximum fluctu-
ation velocity vmqr on the edge of the core. Because
the velocity and vorticity fields induced by one vor-
tex tube influence those by the other, the total maxi-
mum fluctuation velocity, vmart, induced by two vor-
tex tubes depends on the separation distance between
them and their size and is in the range vmaz < Vmazt <
2 Ymaz With 2vpm,; when |dosy| = 0 and vmar When
|doss| >> 1. For example, ¥mazt is 0.59 for vmaz = 0.4,
doyy = *1.5,and e = 1.

The x-z plane of symmetry is defined as the principal
plane, where the strongest interactions occur between
the vortical structure and the sphere. The line connect-
ing the front and rear stagnation points in the standard
axisymmetric flow over a single sphere, which is the x
= 0 line in the principal plane, will be used as a refer-
ence line. We refer to the region above the line as the
‘upper’ region and that below the line as the ‘lower’
region.

Figures 2(a)-(f) display the contour lines of y-
component vorticity in the principal plane at t = 1,
6, 10, 15, 21, and 30 for Re = 100, doys = £1.5,0 =1
With ¥mazt = 0.59. The contour values of the vorticity
are £0.4,+0.8, +1.4, 42, with the highest magnitude at
the sphere surface. The solid and dotted lines in the
figures represent positive and negative values, respec-
tively.

The vorticity contours in figures 2(a) and 2(b) show
that the vortex tubes not only are advected down-
stream but also rotate each other. The contour lines of
vorticity in the figures also show that the viscous diffu-
sion takes place. Figures 2(c) and 2(d) show that the
vortex tubes contact the boundary layer of the sphere
and go around the bottom of the sphere. When the
vortex tube comes close to the sphere boundary layer,
it augments the magnitude of the edge velocity in the
lower boundary layer and reduces the edge velocity
in the upper boundary layer. The result is a higher
strength vorticity in the lower boundary layer than in
the upper boundary layer (see the vorticity contours in




figure 2(c)). Consequently, the vorticity in the lower
boundary layer induces a velocity in the downward di-
rection at the location of the vortex tube with higher
magnitude than that induced by the vorticity in the up-
per boundary layer. This downward induced velocity
advects the vortex tube below the sphere (Kim et al.
[4]). Figure 2(e) shows that the pairing vortex tubes
merge into one vortex due to the attraction of each
other and the viscosity.

3.2.1 Lift, moment, and drag coefficients and
effect of tube circulation

Figure 3 shows the lift coefficients of the sphere as a
function of time for Re = 100, doyy = £1.5,and o = 1.
The lift coefficients are computed for four different total
maximum fluctuation velocities vymqz: induced by the
pair of vortex tubes, with magnitudes equal to 0.148,
0.295, 0.443, and 0.590 (vmqz = 0.1, 0.2, 0.3, and 0.4).
The lift coefficient of the sphere interacting with a sin-
gle vortex tube as a function of time is also shown as a
reference in figure 3 for Re = 100, d,yy = 0,and o =1
With vmazt = 0.148. The connection between the case
of a single vortex tube and that of a pair of vortex tubes
will be discussed in the next section in detail. Due to
the sudden placement of the sphere into the stream, it
takes a short time (0 < ¢ < 0.8) for the initial flow
perturbations to vanish.

When the pair of vortex tubes approach the sphere
(0 £t <9), they produce upwash resulting in a pos-
itive lift force on the sphere. The maximum positive
lift coefficient Cr,maz1 Occurs at about ¢ = 6.8. On
the other hand, when the vortex tubes pass the sphere,
they produce downwash and higher fluid velocity near
the bottom of the sphere than the top due to the shear
flow imposed by the vortex tubes resulting in a negative
lift force. The magnitude of the negative lift is greater
than the positive lift. The maximum negative lift coef-
ficient Cf mar2 occurs at about ¢ = 12.2. CL maz1 and
CL,maz2 are linearly proportional to the maximum fluc-
tuation velocity. The maximum positive lift coeflicient
CL,maz1 1s expressed by

CL,mazl = CVUmazt (16)

where the proportionality constant ¢ = 0.88. The max-
imum negative lift coefficient C, maz2 i8 also expressed
by equation (16) but with ¢ = —1.62. After the lift co-
efficient reaches its maximum negative value, it decays
quickly towards zero because the vortex tube vorticity
is diffused in the sphere wake. The time averaged lift
coefficient (averaged over a time span between ¢ = 0.8
and the maximum time 24.5) for all values of vpazt is
nearly zero (O(10~2)). As mentioned earlier, the be-
havior of CL(t) during the period 0 < t < 0.8 is in-
fluenced by the initial flow perturbation, and thus its
value during this initial period is excluded from the av-
eraging process. The root mean square Cr rm, of the

lift coefficient as a function of time is also linearly pro-
portional to vpyez¢ With ¢ = 0.7.

Figure 4 shows the temporal development of the mo-
ment coefficients for the sphere under the same con-
ditions of Figure 3. The moment coefficient of the
sphere interacting with a single vortex tube as a func-
tion of time is also shown as a reference in figure 4 for
Re =100, doyy =0, and o = 1 with vmare = 0.148.

When the vortex tubes pass the sphere, the front
stagnation point on the sphere is shifted above the
plane z = 0 due to the downwash. This causes
higher shear stress in the lower left region compared to
the upper left region resulting in a positive (counter-
clockwise) torque on the sphere. The upward shift of
the front stagnation point also causes the shear stress
to be higher in the top and upper right regions than in
the bottom and lower right regions resulting in a neg-
ative torque on the sphere. However, the effect of this
negative torque is diminished by the shear flow induced
by the vortex tubes across the sphere which produces
high shear stress at the bottom of the sphere. Asa con-
sequence, a net high positive torque acts on the sphere.
The maximum positive moment coefficient Cas,maz Oc-
curs at t = 11.5. Cup,maz I8 linearly proportional to
VUmazt With ¢ = 0.11.

When the vortex tubes approach the sphere or are
relatively far away from the sphere, the effect of the
shear flow induced by the vortex tubes across the sphere
is small, resulting in a net weak torque on the sphere.

The time averaged moment coefficient (averaged over
a time span between t = 0.6 and 24.5) for all values of
VUmazt 18 0(10‘3), and the root mean square Cpf rms Of
the moment coefficient is linearly proportional to vmazt
with ¢ = 0.043. We note that the torque depends only
the distribution of the shear stresses (7.4 and 7+4) and
is relatively small compared to the lift force.

Figure 5 shows the drag coefficients of the sphere as
a function of time for the same conditions of Figure
4. The drag coefficients are computed for four different
values of vnaz¢ as in Figure 4, in addition to vmszt = 0
which corresponds to the axisymmetric flow without
the vortex tubes.

The initially large values of shear stress and pressure
on the sphere results in large drag as shown in Figure 5.
When the vortex tubes approach the sphere, the pres-
sure at the front stagnation point is lower than that
of the axisymmetric flow past a sphere due to the low
pressure at the center of the vortex tube. Also, the
maximum shear stresses in the upper and lower regions
of the sphere are lower than those of the axisymmetric
flow. This causes the drag on the sphere to be lower
than that of the axisymmetric flow without the vortex
tube. As the vortex tubes move around the bottom of
the sphere, the front stagnation point is shifted above
the plane z = 0 due to the downwash. Consequently,
high pressure and high shear stress act respectively in
the upper left region and the lower left region. This




increases the drag during the period 9 < ¢ < 13.4. For
t > 13.4, the drag approaches that of the axisymmet-
ric flow as the vortex tube moves further downstream.
The time averaged value of the deviation of the drag
coefficient from that of the axisymmetric flow past a
sphere for all values of vmqsz is nearly zero (0O(107%)).

3.2.2 Effects of the size and the offset distance
of the vortex tube

The effects of the size of the vortex tube on the
flow field are studied by performing computations sim-
ilar to those in section 3.2.1for Re = 100, doyy = £1.5,
and five different sizes of the vortex tube, 0.25 <o < 4
in addition to the base case o = 1.

Table 1 shows CL,ma:l, CL,maz21 CL,rm.n CM,mazy
and Carms 28 a function of the vortex tube size which
covers six different initial radii of the vortex tube,
c=4,3,21,0.5 and 0.25, for vmazt = 0.1. Another
computation with different vnqz: showed that all the
lift and moment coefficients are linearly proportional to
Umast at each 0. When o > 2, Cf maz1 a0d CL rms be-
come independent of o, but the magnitudes of Cr maz2,
CM maz, and Cu rms for o = 4 are smaller than those
for ¢ = 2 and 3. When o approaches zero, all the coeffi-
cients tend to be proportional to (¢ vmazt) OF (0 Vmaz)
which is proportional to the circulation of the vortex
tube. For example, CL rms is expressed by

CL,rma = €1 VUmast; 25054
= ¢y Umaztd, 0.26< 0 <2,
0.75>n>0.3, (17)

where the constant ¢; = 1 and ¢s = 0.7, and n de-
pends on o and should approach unity as o reaches
zero. CL maz1, CL,maz2; CM,maz) and Cyf,rms are also
expressed by equation (17) with ¢; = 1.1 and ¢z = 0.88,
¢1 = —2 and ¢3 = —1.65, ¢; = 0.13 and ¢; = 0.11, and
¢1 = 0.053 and ¢y = 0.04, respectively. The time aver-
aged value of the deviation of the drag coefficient from
that of the axisymmetric flow past a sphere for all val-
ues of ¢ is nearly zero (O(107%)).

Note that Cr maz2, CM,maz, and CM,rms foro =4
are, respectively, smaller than those for ¢ = 2 and 3,
and the reason is explained as follows. When the initial
size of the vortex core is considerably larger than the
sphere size (¢ > 4), the effect of the shear flow (induced
by the passage of the vortex tube) across the sphere
diminishes. As a result, the magnitude of CL maz2 de-
creases and approaches CL marz1 a8 ¢ >> 1. We ex-
plained in section 3.2.1 that the magnitude of Cr maz2
depends on the combined effect of the downwash and
the shear flow across the sphere due to the vortex tube.
CM,maz 30d Cp,rms also decreases for the same reason.
In addition, when the initial size of the vortex core is
larger than the sphere size, the effect of the wake be-
hind the sphere on the vortex tube diminishes. As a
consequence, the magnitudes of the lift and moment

coefficients decay slowly towards zero after they peak
near the time of passage of the pair of vortex tubes by
the sphere.

In summary, the maximum positive lift coefficient
and the rms lift coefficient depend only on circulation
at small values of ¢ while they depend only on vpmaz:
(and not o) at large values of ¢. For mid-range values
of o, they depend on both & and vzt (0r equivalently
both ¢ and T};).

Now, the effects of the offset distance on the flow
field are investigated by varying dos; for Re = 100 and
o = 4. The computation was performed for doyy = +£1,
+2, 43, +4, and 0 in addition to the base case doyy =
+1.5. Note that the case of doy; = 0 corresponds to the
interaction between a single vortex tube and a sphere.

It is found that CL,ma:l; CL,ma::2y CL,rm:s CM,mas;
and Cprrm, for each dos; are linearly proportional to
Umazt 38 in the case of doyy = %1.5. The triangular
symbols in Figure 6 show Cr, rms as a function of |d,/|
for Re = 100 and o = 4 while the maximum fluctua-
tion velocity (or the circulation) of each vortex tube is
kept as a constant, vmar = 0.2. The figure shows that
Crrms decays rapidly as |dops| > 0 for vmar = 0.2.
On the other hand, the circular symbols in Figure 6
show CL rms as a function of |d,y;| for Re = 100 and
o = 4 while the total maximum fluctuation velocity in-
duced by the two vortex tubes is kept as a constant,
Umast = 0.2. They also show that the magnitudes of
the rms lift coefficients for doyy = £1, £1.5, £2, X3,
and £4 are close to that for d,;y = 0. After exam-
ining the effect of offset distance for ¢ = 1 and 2, we
found that the equation of the rms lift coefficient for a
single vortex tube can be applicable to that for a pair
of vortex tubes when the separation distance between
their centers is less than 2 /o vortex tube diameter
for Re = 100 if vnqz: is used instead of vmar in the
equation of the rms lift coefficient. The behaviors of
CrL,maz1 80d CL mag2 as a function of |d,; | are similar
to that of Cr rms.

The magnitude of the rms moment coefficient as a
function of |d,ys| decays faster than that of the rms
lift coefficient as d,yy > 0, and the equation of the
rms moment coefficient for a single vortex tube can be
applicable to that for a pair of vortex tubes when the
separation distance between their centers is less than
/o vortex tube diameter for Re = 100 if vmaz: is used
instead of v,z in the equation of the rms moment
coefficient. The behavior of Ca,ma- as a function of
doyy is similar to that of Ca,rms.

3.2.3 Effects of Reynolds number

Similar computations to those in section 3.2.2 are
made for four different Reynolds numbers in the range
of 20 < Re < 80, d,yy = £1.5, and o = 1 in addition
to the base case Re = 100.

CL,ma:clyCL,masZ,CL,rmuCM,max, and CM,rma are




linearly proportional t0 ¥mast for each Reynolds num-
ber as in the case of Re = 100. Figure 7 shows
CL,maz1 and CL rms as a function of Reynolds num-
ber for doyy = £1.5 and ¢ = 1 with vmarr = 0.295.
CL,maz1 increases with a negative power of Reynolds
number as Reynolds number decreases and is expressed
b

¢ CL,ma:l = A Umazt Re? ) (18)

where the constant A = 4.6 and P = —0.37.

CL,maz2 i not sensitive to the change of the Reynolds
numbers and slowly increase as Reynolds number de-
creases. When Reynolds number decreases, the effect
of wake behind the sphere decreases, and thus the lift
coefficient decays slowly to zero after it attains the max-
imum negative value. CL rm, increases with a negative
power of Reynolds number as Reynolds number de-
creases and is expressed by equation (18) with A = 3.5
and P = -0.35. The maximum moment coefficient
and the rms moment coefficient are affected by only
the viscous effect and increases with a negative power
of Reynolds number as Reynolds number decreases.
CM,maz and Cp,rms follow the form of equation (18)
with A = 3.26 and P = —0.75 for the former, and
A =143 and P = —0.77 for the latter for o = 1.

The effect of Reynolds number (20 < Re < 80) on the
flow field is also investigated for the vortex size larger
than ¢ = 1 (2 < ¢ < 4) and doyy = £1.5. CL,maz1
and Cr rms are linearly proportional only to vmazt and
independent of o when o > 2 at fixed Reynolds num-
ber as in the case of Re = 100. CL mar1 and CL rms
increase with a negative power of Reynolds number as
Reynolds number decreases and follow the form of equa-
tion (18) with A = 8.9 and P = —0.45 for the for-
mer, and A = 8.1 and P = —0.45 for the latter for
2 < 0 < 4. CM,maz and Cp rms also increase with a
negative power of Reynolds number as Reynolds num-
ber decreases and follow the form of equation (18) with
A =155and P = —0.83 for the former, and A = 3.1
and P = —0.88 for the latter for 2< ¢ < 4.

Now, the effect of the offset distance is determined for
20 < Re < 80, in addition to the base case Re = 100.

The triangular symbols in Figure 8 show Cf rm; as
a function of |doy| for Re = 20 and o = 4 while the
maximum fluctuation velocity (or the circulation) of
each vortex tube is kept as a constant, vmqes = 0.2. The
figure shows that Cf rms decays fast as |dosz| > 0 for
Ymaz = 0.2. On the other hand, the circular symbols in
Figure 8 show Cf rm. as a function of |d,| for Re = 20
and ¢ = 4 while the total maximum fluctuation velocity
induced by the two vortex tubes is kept as a constant,
Ymagt = 0.2. They also show that the magnitudes of the
rms lift coefficients for doyy = 2 and %4 are close to
that for d,y; = 0. The results for the range of o values
indicate that the equation of the rms lift coefficient for
a single vortex tube can be applicable to that for a pair
of vortex tubes when the separation distance between
their centers is less than 2 \/o vortex tube diameter for

Re = 20 if maz: is used instead of vmq, in the equation
of the rms lift coefficient. The same result as above was
obtained at different Reynolds numbers, Re = 40, 60,
and 80. The behaviors of CL mar1 and CL maez2 38 a
function of |d,ys;| are similar to that of Cr,rm..

The magnitude of the rms moment coefficient as a
function of |doss| decays faster than that of the rms lift
coefficient as d,;y becomes large, and the rms moment
coefficient for a single vortex tube can be applicable
to that for a pair of vortex tubes when the separation
distance between their centers is less than /o vortex
tube diameter if vy,q¢ 18 used instead of vy,4e in the
equation of the rms moment coefficient. The behavior
of CuM maz a8 a function of |d,sy| is similar to that of
CM,rm:-

In summary, comparison of the results from this sec-
tion with those from the previous section shows that
the range of the offset distance for which the equa-
tions for a single vortex tube can be applicable to those
for a pair of vortex tubes does not change as a func-
tion of Reynolds number for 20 < Re < 100. CL rms
and Cusrms for a single vortex tube which were ob-
tained by Kim et al. are expressed by equation (18) with
A = 8.1 and P = —0.45 for the former, and A = 3.1
and P = —0.88. The rms lift coeflicient is written again
here for later use.

CL,rma = 8.1 Vmazt RC-OAS ’ 2 <o < 4 (19)

3.3 Interactions of a pair of vortex tubes of opposite
rotation and a sphere

We consider the same initial flow geometry and pa-
rameters as those in section 3.2 but for a pair of vortex
tubes of opposite rotation. The base case calculation
is that of Re = 100,d,y; = 1.5, and ¢ = 1. Note
that the lift and torque on the sphere are zero due to
the flow symmetry in upper and lower regions of the
sphere

3.3.1 Tubes of top-positive and
bottom-negative circulations

Figure 9 shows the drag coefficients of the sphere
as a function of time for Re = 100,d,s; = £1.5, and
o = 1. The drag coefficients are obtained with four dif-
ferent total maximum fluctuation velocities due to the
vortex tubes, vmaz: = 0.185, 0.369, 0.554, and 0.738
(Vmaz = 0.1, 0.2, 0.3, and 0.4). The temporal behav-
ior of the drag coefficients is different from that of the
case of the pair of vortex tubes of like rotation. The
time-averaged value of the deviation of the drag coeffi-
cient from that of the axisymmetric flow past a sphere
for all values of ¥mqz¢ is not negligible and increased
linearly as ¥mgz: increases. When the top and bottom
vortex tubes have positive and negative circulations, re-
spectively, the induced velocity due to the vortex tubes
adds its magnitude to the base flow along the stagna-
tion streamline, and so the dynamic pressure ahead of




the front stagnation point becomes higher than that of
the axisymmetric flow past a sphere. This causes the
pressure at the stagnation point and the shear stresses
in the upper and lower left regions to be higher than
those of the axisymmetric flow past a sphere. As a
consequence, the drag is increased.

3.3.2 Tubes of top-negative and
bottom-positive circulations

Figure 10 shows the drag coefficients of the sphere as
a function of time for the same parameters as used in
section 3.3.1. The drag coefficients are obtained with
four different total maximum fluctuation velocities due
to the vortex tubes, vmaz: = 0.185, 0.369, 0.554, and
0.738 (vmaz = 0.1, 0.2, 0.3, and 0.4). The temporal
behavior of the drag coefficients is different from that
of the case of the pair of vortex tubes of like rotation.
The time averaged value of the deviation of the drag
coefficient from that of the axisymmetric flow past a
sphere for all values of vmqazt is not negligible and de-
creased linearly as vmqz: increases. When the top and
bottom vortex tubes have negative and positive circula-
tions, respectively, the induced velocity due to the vor-
tex tubes subtracts its magnitude from the base flow
along the stagnation streamline, and so the dynamic
pressure ahead of the front stagnation point becomes
lower than that of the axisymmetric flow past a sphere.
This causes the pressure at the stagnation point and
the shear stresses in the upper and lower left regions
to be lower than those of the axisymmetric flow past a
sphere. As a consequence, the drag is decreased.

4. Conclusions

In order to understand better the physics of interac-
tion between a particle and the turbulent carrier flow,
the unsteady, three-dimensional, incompressible, vis-
cous flow interactions between a pair of vortex tubes
advected by a uniform free stream and a spherical par-
ticle suddenly placed and held fixed in space is investi-
gated numerically for a range of particle Reynolds num-
ber 20 < Re < 100. The counter-clockwise rotating a
pair of cylindrical vortex tubes are initially located ten
radii upstream from the center of the sphere.

A summary of the findings and their applications is
provided as follow.

(i) The effects of the size and the offset distance of
the pair of vortex tubes on the flow field are examined
for 20 < Re < 100. The lift and moment coefficients
are found to be linearly proportional to the maximum
fluctuation velocity (vmazt) induced by the pair of vor-
tex tubes at given size (o) and offset distance of the
vortex tube, and the rms lift coefficient depends only
ON Upmag¢ but independent of ¢ when o > 2. Further-
more, the equations for the lift and moment coefficients
of the sphere for a single vortex tube are applicable to
those for a pair of vortex tubes when the separation

distance between their centers is less than 2/7 vor-
tex tube diameter for the lift coefficients and less than
/o vortex tube diameter for the moment coefficients if
Ymagzt 18 used instead of vmar in the equations. These
separation distances do not vary for a range of Reynolds
number 20 < Re < 100.

(ii) The results in (i) can be applied to turbulent flows
containing small concentration of particles in order to -
obtain the rms lift force on a particle. A turbulent flow
possesses a wide spectrum of eddy sizes. The large ed-
dies contain most of the turbulent kinetic energy and
produce high velocity fluctuations, and so they are re-
sponsible for the dispersion of particles. The particle
size, at the extremes, may be comparable to either the
integral length scale or to the Kolmogorov length scale.
When the size of particle is comparable to the integral
length scale, the rms lift coefficient of the particle is ob-
tained by equation (19). Furthermore, the results tend
to support the idea that equation (19) would be appli-
cable to the case of an eddy being much larger than the
particle. Thus, when the size of particle is comparable
to the Kolmogorov length scale, the rms lift coefficient
of the particle can be obtained approximately by equa-
tion (19), where vmazt is the maximum velocity fluctu-
ation induced by eddies with the integral length scale.
The time during which the particle is influenced by the
eddy is of the order of the eddy lift time.

The deflection of the particle path will depend on
the magnitude of the rms lift coefficient and the ratio,
pr, of the particle density to that of the carrier fluid
(Cr = 8p-A, where A is the dimensionless accelera-
tion of the particle due to the lift force). This result
provides a simple method to estimate the deflection of
particle trajectory in the dilute particle-laden turbu-
lent flow. Equation (19) and the nondimensionalized
Newton’s second law show that the deflection increases
slowly as Reynolds number decreases.

(iii) The magnitude of the rms moment coeficient of
the particle is one order of magnitude less than that
of the rms lift coefficient when Re > 20. Furthermore,
when the initial size of the vortex core is considerably
larger than the sphere size (0 > 4), the effect of the
shear flow (induced by the passage of the vortex tube)
across the sphere diminishes and the torque on the par-
ticle decreases. Thus, the torque on the particle might
be negligible in many applications.

(iv) When the top and bottom vortex tubes have
positive and negative circulations, respectively, the in-
duced velocity due to the vortex tubes adds its mag-
nitude to the base flow along the stagnation stream-
line. This causes the pressure at the stagnation point
and the shear stresses in the upper and lower left re-
gions to be higher than those of the axisymmetric flow
past a sphere. As a consequence, the drag is increased.
On the other hand, When the top and bottom vortex
tubes have negative and positive circulations, respec-
tively, the induced velocity due to the vortex tubes




subtracts its magnitude from the base flow along the
stagnation streamline. This causes the pressure at the
stagnation point and the shear stresses in the upper
and lower left regions to be lower than those of the ax-
isymmetric flow past a sphere. As a consequence, the
drag is decreased. '
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Figure 1. Flow geometry and ccordinates

CL,mal CL.man CL.rmc cM.mcx C.ll.rm

0.111 -0.18 0.103 0.011 0.0051
0.111 -0.196 0.102 0.013 0.0053
0.108 -0.197 0.094 0.013 0.0053
0.088 -0.162 0.070 0.011 0.0043
0.5 0.068 -0.116 0.046 0.0065 0.0023
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Table 1. Maximum positive and negative lift coefficients,
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Figure 2.

rms lift coefficient, maximum moment coefficient,
and rms moment coefficient as a function of

the size of vortex tube for Re =100 and

d,// = 1.5 with ¥pmeze = 0.1.
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Contour lines of y-component vorticity
in the principal plane at (a) t =1, (b) 6,
() 10, (d) 15, (e) 21, and (f) 30 for
Re =100,dosy =0and o =1

with Vet = 0.59.
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Figure 3. Lift coefficients of the sphere as a
function of time and vpmqq: for
Re =100, doyy = +1.5,and o = 1.
* denotes the case of a single vortex.

Figure 4. Moment coefficients of the sphere under
the same conditions of figure 3.
* denotes the case of a single vortex.
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Figure 5. Drag coefficients of the sphere under
the same conditions of figure 3.
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Figure 6. Rms lift coefficients of the sphere as a
function of |doyy| for Re =100 and o = 4.




/'\\ ——— axisymm.
/I \ ~ Umazt = 0.185
N 0 max1 N W Umazt = 0.369
cC A rms 1.8F [I S, Vgt =0.55¢
2 [ \ ——— Vpmaze=0.738 1
O AN :
= |
© L ) i
g 1.6 ‘
Q I 1
(ol ]
oo
4 14} ]
10 100 12} i
Re
.{
Figure 7. Maximum positive lift coefficient and 10 0 5 10 15 B 20 25
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Reynolds number for d,yy = 1.5
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mazt Figure 9. Drag coeflicients of the sphere as a
function of time and vpmqzt for
Re =100, dosy =*1.5,and o=1
with top-positive and bottom-negative
circulations. '
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Figure 8. Rms lift coefficients of the sphere as a 06 1
function of |dyys| for Re = 20 and o = 4.
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Figure 10.Drag coefficients of the sphere as a

function of time and vyqz: for

Re =100,dosy = *1.5,and o =1
with top-negative and bottom-positive
circulations.




